全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

老年性耳聋干预措施的研究进展
Progress of Research on Interventions for Age-Related Hearing Loss

DOI: 10.12677/acm.2024.1461757, PP. 152-160

Keywords: 听力障碍,老年性耳聋,预防,治疗
Hearing Impairment
, Age-Related Hearing Loss, Prevention, Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

老年性耳聋(presbycusis)是老年人中最普遍的感觉缺陷,又称年龄相关性听力下降(Age-related hearing loss, ARHL),是一种随着年龄增长发生听力进行性下降的老年性疾病。ARHL已被广泛证实与跌倒、抑郁、孤独、痴呆和认知能力下降的风险独立相关,并可产生巨大的社会和家庭经济负担。ARHL的发生与多种因素紧密相关,是多因素、多环节共同作用的产物,其目前仍未有明确治疗手段。由于ARHL发病率高,病因、发病机制及病理改变等复杂多样,未来我们需要一个更加个体化和以患者为导向的方法来预防和治疗ARHL。本文对国内外ARHL的干预措施研究进展进行归纳总结,为ARHL的预防及治疗提供参考。
Presbycusis is the most prevalent sensory defect in the elderly, also known as age-related hearing loss (ARHL), a geriatric disease in which progressive hearing loss occurs with age. ARHL has been widely demonstrated to be independently associated with the risk of falls, depression, loneliness, dementia, and cognitive decline, and can generate a significant social and family economic burden. The development of ARHL is closely related to multiple factors and is a multifactorial, multilayered product for which there is still no clear treatment. Due to the high incidence of ARHL and the complexity of its etiology, pathogenesis, and pathological changes, a more individualised and patient-oriented approach to the prevention and treatment of ARHL is needed in the future, and this article summarises the progress of domestic and international research on interventions for ARHL, and provides a reference for the prevention and treatment of ARHL.

References

[1]  Bowl, M.R. and Dawson, S.J. (2019) Age-Related Hearing Loss. Cold Spring Harbor Perspectives in Medicine, 9, a033217.
https://doi.org/10.1101/cshperspect.a033217
[2]  Chadha, S. and Cieza, A. (2018) World Health Organization and Its Initiative for Ear and Hearing Care. Otolaryngologic Clinics of North America, 51, 535-542.
https://doi.org/10.1016/j.otc.2018.01.002
[3]  Chen, G.D. and Fechter, L.D. (2003) The Relationship between Noise-Induced Hearing Loss and Hair Cell Loss in Rats. Hearing Research, 177, 81-90.
https://doi.org/10.1016/S0378-5955(02)00802-X
[4]  Fetoni, A.R., Pisani, A., Rolesi, R., et al. (2022) Early Noise-Induced Hearing Loss Accelerates Presbycusis Altering Aging Processes in the Cochlea. Frontiers in Aging Neuroscience, 14, Article 803973.
https://doi.org/10.3389/fnagi.2022.803973
[5]  Dawes, P., Cruickshanks, K.J., Moore, D.R., et al. (2014) Cigarette Smoking, Passive Smoking, Alcohol Consumption, and Hearing Loss. Journal of the Association for Research in Otolaryngology, 15, 663-674.
https://doi.org/10.1007/s10162-014-0461-0
[6]  Someya, S., Yamasoba, T., Weindruch, R., et al. (2007) Caloric Restriction Suppresses Apoptotic Cell Death in the Mammalian Cochlea and Leads to Prevention of Presbycusis. Neurobiology of Aging, 28, 1613-1622.
https://doi.org/10.1016/j.neurobiolaging.2006.06.024
[7]  Meng, H., Yan, W.Y., Lei, Y.H., et al. (2019) SIRT3 Regulation of Mitochondrial Quality Control in Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 11, Article 313.
https://doi.org/10.3389/fnagi.2019.00313
[8]  Miwa, T. (2021) Protective Effects of N1-Methylnicotinamide against High-Fat Diet-and Age-Induced Hearing Loss via Moderate Overexpression of Sirtuin 1 Protein. Frontiers in Cellular Neuroscience, 15, Article 634868.
https://doi.org/10.3389/fncel.2021.634868
[9]  Pahor, M., Guralnik, J.M., Ambrosius, W.T., et al. (2014) Effect of Structured Physical Activity on Prevention of Major Mobility Disability in Older Adults: The LIFE Study Randomized Clinical Trial. JAMA, 311, 2387-2396.
https://doi.org/10.1001/jama.2014.5616
[10]  Arem, H., Moore, S.C., Patel, A., et al. (2015) Leisure Time Physical Activity and Mortality: A Detailed Pooled Analysis of the Dose-Response Relationship. JAMA Internal Medicine, 175, 959-967.
https://doi.org/10.1001/jamainternmed.2015.0533
[11]  Han, C., Ding, D., Lopez, M.C., et al. (2016) Effects of Long-Term Exercise on Age-Related Hearing Loss in Mice. The Journal of Neuroscience, 36, 11308-11319.
https://doi.org/10.1523/JNEUROSCI.2493-16.2016
[12]  于慧柠, 郑体花, 郑庆印. 氧化应激在年龄相关性耳聋中的作用研究进展[J]. 中华耳科学杂志, 2019, 17(5): 777-782.
[13]  欧阳朝明, 董杨. 抗氧化剂防治老年性聋的研究进展[J]. 中国老年学杂志, 2020, 40(14): 3126-3129.
[14]  Shchepinov M.S. (2007) Reactive Oxygen Species, Isotope Effect, Essential Nutrients, and Enhanced Longevity. Rejuvenation Research, 10, 47-59.
https://doi.org/10.1089/rej.2006.0506
[15]  Hou, S., Chen, P., He, J., et al. (2022) Dietary Intake of Deuterium Oxide Decreases Cochlear Metabolism and Oxidative Stress Levels in a Mouse Model of Age-Related Hearing Loss. Redox Biology, 57, Article ID: 102472.
https://doi.org/10.1016/j.redox.2022.102472
[16]  Hu, S., Sun, Q., Xu, F., et al. (2023) Age-Related Hearing Loss and Its Potential Drug Candidates: A Systematic Review. Chinese Medicine, 18, Article No. 121.
https://doi.org/10.1186/s13020-023-00825-6
[17]  Yu, Y.F., Wu, W.Y., Xiao, G.S., et al. (2015) Effect of T-Type Calcium Channel Blockers on Spiral Ganglion Neurons of Aged C57BL/6J Mice. International Journal of Clinical and Experimental Medicine, 8, 15466-15473.
[18]  Van Eyken, E., Van Laer, L., Fransen, E., et al. (2006) KCNQ4: A Gene for Age-Related Hearing Impairment? Human Mutation, 27, 1007-1016.
https://doi.org/10.1002/humu.20375
[19]  Peixoto Pinheiro, B., Müller, M., B?s, M., Guezguez, J., et al. (2022) A Potassium Channel Agonist Protects Hearing Function and Promotes Outer Hair Cell Survival in a Mouse Model for Age-Related Hearing Loss. Cell Death & Disease, 13, Article No. 595.
https://doi.org/10.1038/s41419-022-04915-5
[20]  Gopinath, B., Flood, V.M., Teber, E., et al. (2011) Dietary Intake of Cholesterol Is Positively Associated and Use of Cholesterol-Lowering Medication Is Negatively Associated with Prevalent Age-Related Hearing Loss. The Journal of Nutrition, 141, 1355-1361.
https://doi.org/10.3945/jn.111.138610
[21]  Lee, Y.Y., Ha, J., Kim, Y.S., et al. (2023) Abnormal Cholesterol Metabolism and Lysosomal Dysfunction Induce Age-Related Hearing Loss by Inhibiting MTORC1-TFEB-Dependent Autophagy. International Journal of Molecular Sciences, 24, Article 17513.
https://doi.org/10.3390/ijms242417513
[22]  Fu, X., Sun, X., Zhang, L., et al. (2018) Tuberous Sclerosis Complex-Mediated MTORC1 Overactivation Promotes Age-Related Hearing Loss. The Journal of Clinical Investigation, 128, 4938-4955.
https://doi.org/10.1172/JCI98058
[23]  Liu, H., Li, F., Li, X., et al. (2022) Rapamycin Ameliorates Age-Related Hearing Loss in C57BL/6J Mice by Enhancing Autophagy in the SGNs. Neuroscience Letters, 772, Article ID: 136493.
https://doi.org/10.1016/j.neulet.2022.136493
[24]  Alvarado, J.C., Fuentes-Santamaría, V., Melgar-Rojas, P., et al. (2015) Synergistic Effects of Free Radical Scavengers and Cochlear Vasodilators: A New Otoprotective Strategy for Age-Related Hearing Loss. Frontiers in Aging Neuroscience, 7, Article 134538.
https://doi.org/10.3389/fnagi.2015.00086
[25]  Cassinotti, L.R., Ji, L., Borges, B.C., et al. (2022) Cochlear Neurotrophin-3 Overexpression at Mid-Life Prevents Age-Related Inner Hair Cell Synaptopathy and Slows Age-Related Hearing Loss. Aging Cell, 21, e13708.
https://doi.org/10.1111/acel.13708
[26]  Celaya, A.M., Rodríguez-de la Rosa, L., Bermúdez-Mu?oz, J.M., et al. (2021) IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells, 10, Article 1686.
https://doi.org/10.3390/cells10071686
[27]  Kociszewska, D. and Vlajkovic, S. (2022) Age-Related Hearing Loss: The Link between Inflammaging, Immunosenescence, and Gut Dysbiosis. International Journal of Molecular Sciences, 23, Article 7348.
https://doi.org/10.3390/ijms23137348
[28]  Lowthian, J.A., Britt, C.J., Rance, G., et al. (2016) Slowing the Progression of Age-Related Hearing Loss: Rationale and Study Design of the ASPIRIN in HEARING, Retinal Vessels Imaging and Neurocognition in Older Generations (ASPREE-HEARING) Trial. Contemporary Clinical Trials, 46, 60-66.
https://doi.org/10.1016/j.cct.2015.11.014
[29]  Iwai, H., Inaba, M., Van Bui, D., et al. (2021) Treg and IL-1 Receptor Type 2-Expressing CD4 T Cell-Deleted CD4 T Cell Fraction Prevents the Progression of Age-Related Hearing Loss in a Mouse Model. Journal of Neuroimmunology, 357, Article ID: 577628.
https://doi.org/10.1016/j.jneuroim.2021.577628
[30]  Mitani, A., Iwai, H., Inaba, M., et al. (2023) Inoculation of Lymphocytes from Young Mice Prevents Progression of Age-Related Hearing Loss in a Senescence-Associated Mouse Model. Experimental Gerontology, 177, Article ID: 112184.
https://doi.org/10.1016/j.exger.2023.112184
[31]  Zhao, T. and Tian, G. (2022) Corrigendum: Potential Therapeutic Role of SIRT1 in Age-Related Hearing Loss. Frontiers in Molecular Neuroscience, 15, Article 1099324.
https://doi.org/10.3389/fnmol.2022.1099324
[32]  高进良, 彭梦萍, 刘成, 等. 白藜芦醇减轻衰老小鼠听皮层线粒体氧化损伤[J]. 中华耳科学杂志, 2023, 21(4): 509-513.
[33]  Fang, J., Wu, H., Zhang, J., et al. (2022) A Reduced Form of Nicotinamide Riboside Protects the Cochlea against Aminoglycoside-Induced Ototoxicity by SIRT1 Activation. Biomedicine & Pharmacotherapy, 150, Article ID: 113071.
https://doi.org/10.1016/j.biopha.2022.113071
[34]  Hultcrantz, M., Simonoska, R. and Stenberg, A.E. (2006) Estrogen and Hearing: A Summary of Recent Investigations. Acta Oto-Laryngologica, 126, 10-14.
https://doi.org/10.1080/00016480510038617
[35]  Bonnard, ?., Bark, R. and Hederstierna, C. (2019) Clinical Update on Sensorineural Hearing Loss in Turner Syndrome and the X-Chromosome. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 181, 18-24.
https://doi.org/10.1002/ajmg.c.31673
[36]  Frisina, R.D., Ding, B., Zhu, X., et al. (2016) Age-Related Hearing Loss: Prevention of Threshold Declines, Cell Loss and Apoptosis in Spiral Ganglion Neurons. Aging, 8, 2081-2099.
https://doi.org/10.18632/aging.101045
[37]  Halonen, J., Hinton, A.S., Frisina, R.D., et al. (2016) Long-Term Treatment with Aldosterone Slows the Progression of Age-Related Hearing Loss. Hearing Research, 336, 63-71.
https://doi.org/10.1016/j.heares.2016.05.001
[38]  丁文吉, 刘洋, 李琳, 等. 体内激素水平对老年性耳聋的影响[J]. 中国实验诊断学, 2022, 26(10): 1556-1558.
[39]  陈琪, 赵立东, 王秋菊. 年龄相关性听力损失的易感基因研究进展[J]. 听力学及言语疾病杂志, 2022, 30(5): 550-554.
[40]  Han, F., Yu, H., Tian, C., et al. (2012) A New Mouse Mutant of the Cdh23 Gene with Early-Onset Hearing Loss Facilitates Evaluation of Otoprotection Drugs. The Pharmacogenomics Journal, 12, 30-44.
https://doi.org/10.1038/tpj.2010.60
[41]  Cheng Y.F. (2019) Atoh1 Regulation in the Cochlea: More than Just Transcription. Journal of Zhejiang University: Science B, 20, 146-155.
https://doi.org/10.1631/jzus.B1600438
[42]  Walters, B.J., Coak, E., Dearman, J., et al. (2017) In vivo Interplay between P27Kip1, GATA3, ATOH1, and POU4F3 Converts Non-Sensory Cells to Hair Cells in Adult Mice. Cell Reports, 19, 307-320.
https://doi.org/10.1016/j.celrep.2017.03.044
[43]  Boettcher, F.A., Mills, J.H., Norton, B.L., et al. (1993) Age-Related Changes in Auditory Evoked Potentials of Gerbils. II. Response Latencies. Hearing Research, 71, 146-156.
https://doi.org/10.1016/0378-5955(93)90030-5
[44]  Fernández Del Campo, I.S., Carmona-Barrón, V.G., Diaz, I., et al. (2024) Multisession Anodal Epidural Direct Current Stimulation of the Auditory Cortex Delays the Progression of Presbycusis in the Wistar Rat. Hearing Research, 444, Article ID: 108969.
https://doi.org/10.1016/j.heares.2024.108969
[45]  孙晋, 牟宏宇, 沈志豪, 等. 听力损失老年人佩戴助听器前后皮层听觉诱发电位与言语感知的研究[J]. 听力学及言语疾病杂志, 2022, 30(1): 11-16.
[46]  Glick, H.A. and Sharma, A. (2020) Cortical Neuroplasticity and Cognitive Function in Early-Stage, Mild-Moderate Hearing Loss: Evidence of Neurocognitive Benefit from Hearing Aid Use. Frontiers in Neuroscience, 14, Article 93.
https://doi.org/10.3389/fnins.2020.00093
[47]  Gurgel, R.K., Duff, K., Foster, N.L., et al. (2022) Evaluating the Impact of Cochlear Implantation on Cognitive Function in Older Adults. The Laryngoscope, 132, S1-S15.
https://doi.org/10.1002/lary.29933
[48]  Moore, B.C.J. (2022) Listening to Music through Hearing Aids: Potential Lessons for Cochlear Implants. Trends in Hearing, 26.
https://doi.org/10.1177/23312165211072969

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133