全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向数学建模竞赛的“一本四融”培训策略探究与实践
Exploration and Practice on the “One Center and Four Integrations” Training Strategy for Mathematical Modeling Competition

DOI: 10.12677/aam.2024.136245, PP. 2571-2579

Keywords: 一本四融,数学建模竞赛,数学建模,培训策略,人才培养
One Center and Four Integrations
, Mathematical Modeling Competition, Mathematical Modeling, Training Strategy, Talent Cultivation

Full-Text   Cite this paper   Add to My Lib

Abstract:

数学建模竞赛是我国高校规模最大的学科竞赛,对创新人才培养起着至关重要的作用。目前数学建模竞赛培训存在培训方式单一、没有统一培训策略指导、对创新人才培养内驱动力不足等问题,针对这些问题,构建了面向数学建模竞赛的“一本四融”培训策略,该策略以数学建模竞赛为依托,以培养学生创新能力为根本,融合了竞赛赛题的常见题型、竞赛论文的撰写和写作注意事项、竞赛集训安排以及竞赛拓展与成效,为高校数学建模竞赛培训提供了新思路,赋能创新人才培养。
The mathematical modeling competition is the largest discipline competition in Chinese universities and plays a crucial role in cultivating innovative talents. At present, there are problems in the training of mathematical modeling competition, such as the single training method, lack of unified training strategy guidance, and insufficient internal driving force for cultivating innovative talents. In response to these problems, the “one center and four integrations” training strategy for mathematical modeling competition has been constructed. This strategy is based on mathematical modeling competition and aims to cultivate students’ innovative abilities. It integrates common types of competition questions, writing and writing considerations for competition papers, training arrangements, and the expansion and effectiveness of competition, providing new ideas for the training of mathematical modeling competition in universities and empowering the cultivation of innovative talents.

References

[1]  石剑平, 姜麟, 房辉. 以学科竞赛和科创项目协同专业教学的创新型人才培养模式探索[J]. 大学数学, 2023, 39(1): 38-45.
[2]  杨真真, 李雷, 赵洪牛, 等. 基于数学建模竞赛的“六位一体”创新人才培养模式实践研究[J]. 实验室研究与探索, 2018, 37(9): 172-176.
[3]  张兰云, 董素梅. PBL教学理念构建高等院校数学建模竞赛培训体系[J]. 科技风, 2022, 493(17): 32-34.
[4]  Xu, Y. and Liu, W. (2023) The Limitation and Countermeasures of Mathematical Modeling Course in Finance and Economics Universities. Frontiers in Educational Research, 6, 1-5.
https://doi.org/10.25236/FER.2023.060601
[5]  全国大学生数学建模竞赛. 历年竞赛赛题[EB/OL].
http://www.mcm.edu.cn/html_cn/block/8579f5fce999cdc896f78bca5d4f8237.html, 2024-02-23.
[6]  数学建模常见题型和建模方案[EB/OL].
https://blog.csdn.net/m0_73686459/article/details/136628214, 2024-03-13.
[7]  林宙辰, 李欢, 方聪. 机器学习中的交替方向乘子法[M]. 北京: 科学出版社, 2023.
[8]  韩中庚. 数学建模竞赛论文的写作方法[J]. 数学建模及其应用, 2017, 6(2): 42-48.
[9]  数学建模论文写作方法[EB/OL].
https://blog.csdn.net/qq_53300975/article/details/119669410, 2024-02-23.
[10]  韩中庚, 但琦. 交巡警服务平台的设置与调度问题解析[J]. 数学建模及其应用, 2012, 1(1): 67-72 77.
[11]  周义仓. 2012年CUMCM A题解答评析[J]. 数学建模及其应用, 2013, 2(1): 60-66.
[12]  张晓雨, 王颖杰, 鲍梦婷, 等. 车道被占用对城市道路通行能力的影响[J]. 汕头大学学报(自然科学版), 2014, 29(3): 5-17.
[13]  杨真真, 匡楠, 范露, 等. 基于卷积神经网络的图像分类算法综述[J]. 信号处理, 2018, 34(12): 1474-1489.
[14]  周义仓. 悬链线模型在系泊系统设计中的应用——2016年全国大学生数学建模竞赛A题解答评述[J]. 数学建模及其应用, 2016, 5(4): 26-33.
[15]  韩中庚. 机场出租车问题的数学模型[J]. 数学建模及其应用, 2020, 9(1): 49-56.
[16]  韩中庚, 梅正阳. 智能RGV的动态调度策略问题的数学模型[J]. 数学建模及其应用, 2019, 8(1): 53-65 83.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133