|
Cbf-β在骨关节炎发病中的研究概况
|
Abstract:
骨关节炎(OA)是我国最常见的骨关节炎,是老年人活动能力受损的主要原因之一,占慢性中度至重度疼痛的三分之一以上。OA是一种累及关节及其周围组织的慢性疾病,主要导致关节软骨进行性损伤,进而导致软骨下骨和周围滑膜结构损伤。尽管受OA影响的人数逐年增多,但目前仍无法延缓OA的进展,主要治疗方案集中在缓解症状,关节置换术是最终结局。深入探讨分子靶点的作用在研究药物开发的过程中至关重要。特别是,Cbf-β作为一种与Runx2结合形成异质二聚体的共转录因子,不仅增强了Runx2与DNA的结合力,还通过阻止Runx2的泛素化来维持其稳定性,因此在软骨内骨化过程中的作用比膜内骨化更为显著。本文综述了与Cbf-β和骨关节炎发展相关的最新研究成果,并探讨了Cbf-β作为治疗目标的可能性。这些发现强调了深入理解分子机制对于开发新的治疗策略的重要性,并指出了Cbf-β在骨科疾病治疗领域内的潜在价值。
Osteoarthritis (OA) is the most common osteoarthritis in China. It is one of the main causes of impaired mobility in the elderly, accounting for more than one-third of chronic moderate to severe pain. OA is a chronic disease involving joints and surrounding tissues, which mainly leads to progressive damage to joint cartilage, which in turn leads to structural damage to the lower cartilage and peripheral synovial membrane. Although the number of people affected by OA has increased year by year, it is still impossible to delay the progress of OA. The main treatment plan focuses on relieving symptoms, and joint replacement is the final result. It is very important to deeply explore the role of molecular targets in the process of drug development. In particular, Cbf-β, as a co-recording factor bound to Runx2 to form a heterogeneous dimer, not only enhances the binding force of Runx2 to DNA, but also maintains its stability by preventing the ubiquitinization of Runx2. Therefore, it plays a more significant role in the process of cartilage ossification than intramembrane ossification. This article reviews the latest research results related to the development of Cbf-β and osteoarthritis, and discusses the possibility of Cbf-β as a treatment target. These findings emphasize the importance of an in-depth understanding of molecular mechanisms for the development of new treatment strategies, and point out the potential value of Cbf-β in the field of orthopedic disease treatment.
[1] | Van Baar, M.E., Dekker, J., Lemmens, J.A., et al. (1998) Pain and Disability in Patients with Osteoarthritis of Hip or Knee: The Relationship with Articular, Kinesiological, and Psychological Characteristics. The Journal of Rheumatology, 25, 125-133. |
[2] | Lawrence, R.C., Felson, D.T., Helmick, C.G., et al. (2008) Estimates of the Prevalence of Arthritis and Other Rheumatic Conditions in the United States. Part II. Arthritis & Rheumatology, 58, 26-35. https://doi.org/10.1002/art.23176 |
[3] | Dieppe, P.A. and Lohmander, L.S. (2005) Pathogenesis and Management of Pain in Osteoarthritis. The Lancet, 365, 965-973. https://doi.org/10.1016/S0140-6736(05)71086-2 |
[4] | Yang, X., Chen, L., Xu, X., et al. (2001) TGF-Beta/Smad3 Signals Repress Chondrocyte Hypertrophic Differentiation and Are Required for Maintaining Articular Cartilage. Journal of Cell Biology, 153, 35-46. https://doi.org/10.1083/jcb.153.1.35 |
[5] | Shen, J., Li, J., Wang, B., et al. (2013) Deletion of the Transforming Growth Factor Beta Receptor Type II Gene in Articular Chondrocytes Leads to a Progressive Osteoarthritis-Like Phenotype in Mice. Arthritis & Rheumatology, 65, 3107-3119. https://doi.org/10.1002/art.38122 |
[6] | Zhu, M., Tang, D., Wu, Q., et al. (2009) Activation of Beta-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-Like Phenotype in Adult Beta-Catenin Conditional Activation Mice. Journal of Bone and Mineral Research, 24, 12-21. https://doi.org/10.1359/jbmr.080901 |
[7] | Lin, A.C., Seeto, B.L., Bartoszko, J.M., et al. (2009) Modulating Hedgehog Signaling Can Attenuate the Severity of Osteoarthritis. Nature Medicine, 15, 1421-1425. https://doi.org/10.1038/nm.2055 |
[8] | Saito, T., Fukai, A., Mabuchi, A., et al. (2010) Transcriptional Regulation of Endochondral Ossification by HIF-2alpha during Skeletal Growth and Osteoarthritis Development. Nature Medicine, 16, 678-686. https://doi.org/10.1038/nm.2146 |
[9] | Yang, S., Kim, J., Ryu, J.H., et al. (2010) Hypoxia-Inducible Factor-2alpha Is a Catabolic Regulator of Osteoarthritic Cartilage Destruction. Nature Medicine, 16, 687-693. https://doi.org/10.1038/nm.2153 |
[10] | Chen, D., Shen, J., Zhao, W., et al. (2017) Osteoarthritis: Toward a Comprehensive Understanding of Pathological Mechanism. Bone Research, 5, Article No. 16044. https://doi.org/10.1038/boneres.2016.44 |
[11] | Miller, J., Horner, A., Stacy, T., et al. (2002) The Core-Binding Factor Beta Subunit Is Required for Bone Formation and Hematopoietic Maturation. Nature Genetics, 32, 645-649. https://doi.org/10.1038/ng1049 |
[12] | Chen, W., Ma, J., Zhu, G., et al. (2014) Cbfbeta Deletion in Mice Recapitulates Cleidocranial Dysplasia and Reveals Multiple Functions of Cbfbeta Required for Skeletal Development. Proceedings of the National Academy of Sciences of the United States of America, 111, 8482-8487. https://doi.org/10.1073/pnas.1310617111 |
[13] | Lim, K.E., Park, N.R., Che, X., et al. (2015) Core Binding Factor Beta of Osteoblasts Maintains Cortical Bone Mass via Stabilization of Runx2 in Mice. Journal of Bone and Mineral Research, 30, 715-722. https://doi.org/10.1002/jbmr.2397 |
[14] | Qin, X., Jiang, Q., Matsuo, Y., et al. (2015) Cbfb Regulates Bone Development by Stabilizing Runx Family Proteins. Journal of Bone and Mineral Research, 30, 706-714. https://doi.org/10.1002/jbmr.2379 |
[15] | Jiang, Q., Qin, X., Kawane, T., et al. (2016) Cbfb2 Isoform Dominates More Potent Cbfb1 and Is Required for Skeletal Development. Journal of Bone and Mineral Research, 31, 1391-1404. https://doi.org/10.1002/jbmr.2814 |
[16] | Baker, K., Grainger, A., Niu, J., et al. (2010) Relation of Synovitis to Knee Pain Using Contrast-Enhanced MRIs. Annals of the Rheumatic Diseases, 69, 1779-1783. https://doi.org/10.1136/ard.2009.121426 |
[17] | Hill, C, L., Hunter, D, J., Niu, J., et al. (2007) Synovitis Detected on Magnetic Resonance Imaging and Its Relation to Pain and Cartilage Loss in Knee Osteoarthritis. Annals of the Rheumatic Diseases, 66, 1599-1603. https://doi.org/10.1136/ard.2006.067470 |
[18] | Loeser, R.F., Goldring, S.R., Scanzello, C.R., et al. (2012) Osteoarthritis: A Disease of the Joint as an Organ. Arthritis & Rheumatology, 64, 1697-1707. https://doi.org/10.1002/art.34453 |
[19] | Goldring, M.B., Otero, M., Plumb, D.A., et al. (2011) Roles of Inflammatory and Anabolic Cytokines in Cartilage Metabolism: Signals and Multiple Effectors Converge upon MMP-13 Regulation in Osteoarthritis. European Cells & Materials, 21, 202-220. https://doi.org/10.22203/eCM.v021a16 |
[20] | Goldring, M.B. (2000) The Role of the Chondrocyte in Osteoarthritis. Arthritis & Rheumatology, 43, 1916-1926. https://doi.org/10.1002/1529-0131(200009)43:9<1916::AID-ANR2>3.0.CO;2-I |
[21] | Higashikawa, A., Saito, T., Ikeda, T., et al. (2009) Identification of the Core Element Responsive to Runt-Related Transcription Factor 2 in the Promoter of Human Type X Collagen Gene. Arthritis & Rheumatology, 60, 166-178. https://doi.org/10.1002/art.24243 |
[22] | Kamekura, S., Kawasaki, Y., Hoshi, K., et al. (2006) Contribution of Runt-Related Transcription Factor 2 to the Pathogenesis of Osteoarthritis in Mice after Induction of Knee Joint Instability. Arthritis & Rheumatology, 54, 2462-2470. https://doi.org/10.1002/art.22041 |
[23] | Dong, Y.F., Soung, D.Y., Schwarz, E.M., et al. (2006) Wnt Induction of Chondrocyte Hypertrophy through the Runx2 Transcription Factor. Journal of Cellular Physiology, 208, 77-86. https://doi.org/10.1002/jcp.20656 |
[24] | Akiyama, H., Lyons, J.P., Mori-Akiyama, Y., et al. (2004) Interactions between Sox9 and Beta-Catenin Control Chondrocyte Differentiation. Genes & Development, 18, 1072-1087. https://doi.org/10.1101/gad.1171104 |
[25] | Hill, T.P., Spater, D., Taketo, M.M., et al. (2005) Canonical Wnt/Beta-Catenin Signaling Prevents Osteoblasts from Differentiating into Chondrocytes. Developmental Cell, 8, 727-738. https://doi.org/10.1016/j.devcel.2005.02.013 |
[26] | Yan, D., Chen, D. and Im, H.J. (2012) Fibroblast Growth Factor-2 Promotes Catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 Axis That Coordinates with the PKCdelta Pathway in Human Articular Chondrocytes. Journal of Cellular Biochemistry, 113, 2856-2865. https://doi.org/10.1002/jcb.24160 |
[27] | Orito, K., Koshino, T. and Saito, T. (2003) Fibroblast Growth Factor 2 in Synovial Fluid from an Osteoarthritic Knee with Cartilage Regeneration. Journal of Orthopaedic Science, 8, 294-300. https://doi.org/10.1007/s10776-003-0647-6 |
[28] | Day, T.F., Guo, X., Garrett-Beal, L., et al. (2005) Wnt/Beta-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis. Developmental Cell, 8, 739-750. https://doi.org/10.1016/j.devcel.2005.03.016 |
[29] | Van Den Berg, W.B. (2011) Osteoarthritis Year 2010 in Review: Pathomechanisms. Osteoarthritis Cartilage, 19, 338-341. https://doi.org/10.1016/j.joca.2011.01.022 |
[30] | Tchetina, E.V. (2011) Developmental Mechanisms in Articular Cartilage Degradation in Osteoarthritis. Arthritis, 2011, Article ID: 683970. https://doi.org/10.1155/2011/683970 |
[31] | Scanzello, C.R., Umoh, E., Pessler, F., et al. (2009) Local Cytokine Profiles in Knee Osteoarthritis: Elevated Synovial Fluid Interleukin-15 Differentiates Early from End-Stage Disease. Osteoarthritis Cartilage, 17, 1040-1048. https://doi.org/10.1016/j.joca.2009.02.011 |
[32] | Scanzello, C.R. and Goldring, S.R. (2012) The Role of Synovitis in Osteoarthritis Pathogenesis. Bone, 51, 249-257. https://doi.org/10.1016/j.bone.2012.02.012 |
[33] | Ling, S.M., Patel, D.D., Garnero, P., et al. (2009) Serum Protein Signatures Detect Early Radiographic Osteoarthritis. Osteoarthritis Cartilage, 17, 43-48. https://doi.org/10.1016/j.joca.2008.05.004 |
[34] | Endres, M., Andreas, K., Kalwitz, G., et al. (2010) Chemokine Profile of Synovial Fluid from Normal, Osteoarthritis and Rheumatoid Arthritis Patients: CCL25, CXCL10 and XCL1 Recruit Human Subchondral Mesenchymal Progenitor Cells. Osteoarthritis Cartilage, 18, 1458-1466. https://doi.org/10.1016/j.joca.2010.08.003 |
[35] | Ellman, M.B., Yan, D., Ahmadinia, K., et al. (2013) Fibroblast Growth Factor Control of Cartilage Homeostasis. Journal of Cellular Biochemistry, 114, 735-742. https://doi.org/10.1002/jcb.24418 |
[36] | Chia, S.L., Sawaji, Y., Burleigh, A., et al. (2009) Fibroblast Growth Factor 2 Is an Intrinsic Chondroprotective Agent That Suppresses ADAMTS-5 and Delays Cartilage Degradation in Murine Osteoarthritis. Arthritis & Rheumatology, 60, 2019-2027. https://doi.org/10.1002/art.24654 |
[37] | Jones, S.E. and Jomary, C. (2002) Secreted Frizzled-Related Proteins: Searching for Relationships and Patterns. Bioessays, 24, 811-820. https://doi.org/10.1002/bies.10136 |
[38] | Komori, T., Yagi, H., Nomura, S., et al. (1997) Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation Owing to Maturational Arrest of Osteoblasts. Cell, 89, 755-764. https://doi.org/10.1016/S0092-8674(00)80258-5 |
[39] | Shibata, S., Suda, N., Yoda, S., et al. (2004) Runx2-Deficient Mice Lack Mandibular Condylar Cartilage and Have Deformed Meckel’s Cartilage. Anatomy and Embryology (Berl), 208, 273-280. https://doi.org/10.1007/s00429-004-0393-2 |
[40] | Lee, B., Thirunavukkarasu, K., Zhou, L., et al. (1997) Missense Mutations Abolishing DNA Binding of the Osteoblast-Specific Transcription Factor OSF2/CBFA1 in Cleidocranial Dysplasia. Nature Genetics, 16, 307-310. https://doi.org/10.1038/ng0797-307 |
[41] | Liao, L., Zhang, S., Zhou, G.Q., et al. (2019) Deletion of Runx2 in Condylar Chondrocytes Disrupts TMJ Tissue Homeostasis. Journal of Cellular Physiology, 234, 3436-3444. https://doi.org/10.1002/jcp.26761 |
[42] | Liao, L., Zhang, S., Gu, J., et al. (2017) Deletion of Runx2 in Articular Chondrocytes Decelerates the Progression of DMM-Induced Osteoarthritis in Adult Mice. Scientific Reports, 7, Article No. 2371. https://doi.org/10.1038/s41598-017-02490-w |
[43] | Brophy, R.H., Rai, M.F., Zhang, Z., et al. (2012) Molecular Analysis of Age and Sex-Related Gene Expression in Meniscal Tears with and without a Concomitant Anterior Cruciate Ligament Tear. The Journal of Bone and Joint Surgery. American Volume, 94, 385-393. https://doi.org/10.2106/JBJS.K.00919 |
[44] | Englund, M., Roemer, F.W., Hayashi, D., et al. (2012) Meniscus Pathology, Osteoarthritis and the Treatment Controversy. Nature Reviews Rheumatology, 8, 412-419. https://doi.org/10.1038/nrrheum.2012.69 |
[45] | Muhammad, H., Schminke, B., Bode, C., et al. (2014) Human Migratory Meniscus Progenitor Cells Are Controlled via the TGF-Beta Pathway. Stem Cell Reports, 3, 789-803. https://doi.org/10.1016/j.stemcr.2014.08.010 |
[46] | Hellio, L.G.M., Vignon, E., Otterness, I.G., et al. (2001) Early Changes in Lapine Menisci during Osteoarthritis Development: Part I: Cellular and Matrix Alterations. Osteoarthritis Cartilage, 9, 56-64. https://doi.org/10.1053/joca.2000.0350 |
[47] | Fox, A.J., Wanivenhaus, F., Burge, A.J., et al. (2015) The Human Meniscus: A Review of Anatomy, Function, Injury, and Advances in Treatment. Clinical Anatomy, 28, 269-287. https://doi.org/10.1002/ca.22456 |
[48] | Hunziker, E.B. (2002) Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects. Osteoarthritis Cartilage, 10, 432-463. https://doi.org/10.1053/joca.2002.0801 |
[49] | Petersen, W., Pufe, T., Starke, C., et al. (2005) Locally Applied Angiogenic Factors—A New Therapeutic Tool for Meniscal Repair. Annals of Anatomy, 187, 509-519. https://doi.org/10.1016/j.aanat.2005.04.010 |
[50] | Cao, J., Han, X., Qi, X., et al. (2018) MiR-204-5p Inhibits the Occurrence and Development of Osteoarthritis by Targeting Runx2. International Journal of Molecular Medicine, 42, 2560-2568. https://doi.org/10.3892/ijmm.2018.3811 |
[51] | Ling, M., Huang, P., Islam, S., et al. (2017) Epigenetic Regulation of Runx2 Transcription and Osteoblast Differentiation by Nicotinamide Phosphoribosyltransferase. Cell & Bioscience, 7, Article No. 27. https://doi.org/10.1186/s13578-017-0154-6 |
[52] | Blaney, D.E., Van Der Kraan, P.M. and Van Den Berg, W.B. (2007) TGF-Beta and Osteoarthritis. Osteoarthritis Cartilage, 15, 597-604. https://doi.org/10.1016/j.joca.2007.02.005 |
[53] | Lanske, B., Karaplis, A.C., Lee, K., et al. (1996) PTH/PTHrP Receptor in Early Development and Indian Hedgehog-Regulated Bone Growth. Science, 273, 663-666. https://doi.org/10.1126/science.273.5275.663 |
[54] | Mak, K.K., Kronenberg, H.M., Chuang, P.T., et al. (2008) Indian Hedgehog Signals Independently of PTHrP to Promote Chondrocyte Hypertrophy. Development, 135, 1947-1956. https://doi.org/10.1242/dev.018044 |
[55] | Nakamura, T., Aikawa, T., Iwamoto-Enomoto, M., et al. (1997) Induction of Osteogenic Differentiation by Hedgehog Proteins. Biochemical and Biophysical Research Communications, 237, 465-469. https://doi.org/10.1006/bbrc.1997.7156 |
[56] | Zhou, J., Chen, Q., Lanske, B., et al. (2014) Disrupting the Indian Hedgehog Signaling Pathway in Vivo Attenuates Surgically Induced Osteoarthritis Progression in Col2a1-CreERT2; Ihhfl/Fl Mice. Arthritis Research & Therapy, 16, R11. https://doi.org/10.1186/ar4437 |
[57] | Yang, Y. (2003) Wnts and Wing: Wnt Signaling in Vertebrate Limb Development and Musculoskeletal Morphogenesis. Birth Defects Research Part C: Embryo Today, 69, 305-317. https://doi.org/10.1002/bdrc.10026 |
[58] | Held, A., Glas, A., Dietrich, L., et al. (2018) Targeting Beta-Catenin Dependent Wnt Signaling via Peptidomimetic Inhibitors in Murine Chondrocytes and OA Cartilage. Osteoarthritis Cartilage, 26, 818-823. https://doi.org/10.1016/j.joca.2018.02.908 |
[59] | Bertrand, J., Kraft, T., Gronau, T., et al. (2020) BCP Crystals Promote Chondrocyte Hypertrophic Differentiation in OA Cartilage by Sequestering Wnt3a. Annals of the Rheumatic Diseases, 79, 975-984. https://doi.org/10.1136/annrheumdis-2019-216648 |
[60] | Shi, S., Man, Z. and Sun, S. (2022) Wnt3a Knockdown Promotes Collagen Type II Expression in Rat Chondrocytes. Experimental and Therapeutic Medicine, 24, Article No. 526. https://doi.org/10.3892/etm.2022.11453 |