|
循环miRNAs作为急性缺血性卒中生物标记物和脑保护机制的研究进展
|
Abstract:
MicroRNAs (miRNAs)是一类非编码RNA分子,在基因转录后调节急性缺血性中风(AIS)中发挥重要作用。由于miRNAs基因高度保守且在血液中稳定,并能通过调节靶基因的表达参与脑卒中的发生和进展。因此,miRNAs有望作为缺血性脑卒中诊断和预后的生物标志物。miRNAs通过减弱炎症反应,抑制氧化应激,抑制细胞凋亡,促进血管生成等途径来发挥脑保护作用,随着对miRNAs在AIS脑保护机制不断深入研究,它们潜在的治疗靶点可能成为新的治疗途径。
MicroRNAs (miRNAs) are a class of non coding RNA molecules that play an important role in post transcriptional regulation of acute ischemic stroke (AIS). Due to the high conservation and stability of miRNAs genes in the bloodstream, they can participate in the occurrence and progression of stroke by regulating the expression of target genes. Therefore, miRNAs are expected to serve as biomarkers for the diagnosis and prognosis of ischemic stroke. MiRNAs exert neuroprotective effects by reducing inflammatory response, inhibiting oxidative stress, inhibiting cell apoptosis, and promoting angiogenesis. With further research on the neuroprotective mechanisms of miRNAs in AIS, their potential therapeutic targets may become new therapeutic approaches.
[1] | Katan, M. and Luft, A. (2018) Global Burden of Stroke. Seminars in Neurology, 38, 208-211. https://doi.org/10.1055/s-0038-1649503 |
[2] | Wang, J., Chen, J. and Sen, S. (2016) MicroRNA as Biomarkers and Diagnostics. Journal of Cellular Physiology, 231, 25-30. https://doi.org/10.1002/jcp.25056 |
[3] | Liu, Z., et al. (2022) Gene Regulation in Animal miRNA Biogenesis. Epigenomics, 14, 1197-1212. https://doi.org/10.2217/epi-2022-0214 |
[4] | Specjalski, K. and Jassem, E. (2019) MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Archivum Immunologiae et Therapiae Experimentalis, 67, 213-223. https://doi.org/10.1007/s00005-019-00547-4 |
[5] | Zuo, M.L., Wang, A.P. and Song, G.L. (2020) MiR-652 Protects Rats from Cerebral Ischemia/Reperfusion Oxidative Stress Injury by Directly Targeting NOX2. Biomedicine & Pharmacotherapy, 124, Article ID: 109860. https://doi.org/10.1016/j.biopha.2020.109860 |
[6] | Ma, Y.H., Deng, W.J. and Luo, Z.Y. (2022) Inhibition of MicroRNA-29b Suppresses Oxidative Stress and Reduces Apoptosis in Ischemic Stroke. Neural Regeneration Research, 17, 433-439. https://doi.org/10.4103/1673-5374.314319 |
[7] | Liang, Z., Chi, Y.J., Lin, G.Q., et al. (2018) MiRNA-26a Promotes Angiogenesis in a Rat Model of Cerebral Infarction via PI3K/AKT and MAPK/ERK Pathway. European Review for Medical and Pharmacological Sciences, 22, 3485-3492. |
[8] | Rhoades, M.W., Reinhart, B.J., Lim, L.P., et al. (2002) Prediction of Plant MicroRNA Targets. Cell, 110, 513-520. https://doi.org/10.1016/S0092-8674(02)00863-2 |
[9] | Lai, E.C. (2002) Micro RNAs Are Complementary to 3’UTR Sequence Motifs That Mediate Negative Post-Transcriptional Regulation. Nature Genetics, 30, 363-364. https://doi.org/10.1038/ng865 |
[10] | Michlewski, G. and Cáceres, J.F. (2019) Post-Transcriptional Control of miRNA Biogenesis. RNA, 25, 1-16. https://doi.org/10.1261/rna.068692.118 |
[11] | Song, X.D., Li, S.X. and Zhu, M. (2021) Plasma MiR-409-3p Promotes Acute Cerebral Infarction via Suppressing CTRP3. The Kaohsiung Journal of Medical Sciences, 37, 324-333. https://doi.org/10.1002/kjm2.12327 |
[12] | Wang, Q., Wang, F. and Fu, F. (2021) Diagnostic and Prognostic Value of Serum MiR-9-5p and MiR-128-3p Levels in Early-Stage Acute Ischemic Stroke. Clinics, 76, e2958. https://doi.org/10.6061/clinics/2021/e2958 |
[13] | Cheng, X., Kan, P. and Ma, Z. (2018) Exploring the Potential Value of MiR-148b-3p, MiR-151b and MiR-27b-3p as Biomarkers in Acute Ischemic Stroke. Bioscience Reports, 38, BSR20181033. https://doi.org/10.1042/BSR20181033 |
[14] | 张立娜, 王海虹, 王适达. 血清miR-124、miR-155联合miR-23检测在超早期脑梗死诊断中的应用价值[J]. 国际检验医学杂志, 2021, 42(20): 2478-2481, 2486. |
[15] | Tiedt, S., Prestel, M. and Malik, R. (2017) RNA-Seq Identifies Circulating MiR-125a-5p, MiR-125b-5p, and MiR-143-3p as Potential Biomarkers for Acute Ischemic Stroke. Circulation Research, 121, 970-980. https://doi.org/10.1161/CIRCRESAHA.117.311572 |
[16] | Naess, H., Kurtz, M. and Thomassen, L. (2016) Serial NIHSS Scores in Patients with Acute Cerebral Infarction. Acta Neurologica Scandinavica, 133, 415-420. https://doi.org/10.1111/ane.12477 |
[17] | 张晓璇, 马征, 窦志杰, 等. 血清miRNA-27a-3p、miRNA-210水平与ACI患者神经功能改善的关系[J]. 脑与神经疾病杂志, 2022, 30(3): 154-159. |
[18] | Guo, C., Yao, Y. and Li, Q. (2022) Expression and Clinical Value of MiR-185 and MiR-424 in Patients with Acute Ischemic Stroke. International Journal of General Medicine, 15, 71-78. https://doi.org/10.2147/IJGM.S340586 |
[19] | Mostafa, S., Al Masry, H. and Hussein, M. (2023) The Potential Role of Micro-RNA 125b-5p Level in Predicting Outcome from Thrombolytic Therapy in Patients with Acute Ischemic Stroke. Journal of Thrombosis and Thrombolysis, 56, 275-282. https://doi.org/10.1007/s11239-023-02831-9 |
[20] | 韩旭东, 梁志刚, 阎志慧, 等. 血清miR-103、sCD40L对急性缺血性脑卒中治疗效果及预后评估的价值[J]. 山东医药, 2022, 62(10): 25-29. |
[21] | 苏显都, 林明利, 符步远, 等. 血清miR-17-5p与Hcy水平联合预测急性缺血性脑卒中患者预后的价值[J]. 中国神经免疫学和神经病学杂志, 2020, 27(4): 298-302. |
[22] | 晋霞, 等. 急性脑梗死患者血清miR-29c-3p、MDM2水平与预后的关系[J]. 疑难病杂志, 2023, 22(6): 595-599, 606. |
[23] | Tian, H., Zhao, Y. and Du, C. (2021) Expression of MiR-210, MiR-137, and MiR-153 in Patients with Acute Cerebral Infarction. Research International, 2021, Article ID: 4464945. https://doi.org/10.1155/2021/4464945 |
[24] | 陈南耀, 余丹. 联合检测血清miR-124与miR-182的表达水平对急性脑梗死诊断与预后评估的价值[J]. 中国动脉硬化杂志, 2019, 27(6): 502-506. |
[25] | Zhu, X., Liu, X. and Liu, Y. (2020) Uncovering the Potential Differentially Expressed miRNAs and MRNAs in Ischemic Stroke Based on Integrated Analysis in the Gene Expression Omnibus Database. European Neurology, 83, 404-414. https://doi.org/10.1159/000507364 |
[26] | Slota, J.A. and Booth, S.A. (2019) MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Non-Coding RNA, 5, Article 35. https://doi.org/10.3390/ncrna5020035 |
[27] | Huang, L., Ma, Q. and Li, Y. (2018) Inhibition of MicroRNA-210 Suppresses Pro-Inflammatory Response and Reduces Acute Brain Injury of Ischemic Stroke in Mice. Experimental Neurology, 300, 41-50. https://doi.org/10.1016/j.expneurol.2017.10.024 |
[28] | Ebrahimi, V., Rastegar-Moghaddam, S.H. and Mohammadipour, A. (2023) Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia. Molecular Neurobiology, 60, 2062-2069. https://doi.org/10.1007/s12035-022-03197-4 |
[29] | Yang, Y., Ye, Y. and Kong, C. (2019) MiR-124 Enriched Exosomes Promoted the M2 Polarization of Microglia and Enhanced Hippocampus Neurogenesis after Traumatic Brain Injury by Inhibiting TLR4 Pathway. Neurochemical Research, 44, 811-828. https://doi.org/10.1007/s11064-018-02714-z |
[30] | Ma, X., Yun, H.J. and Elkin, K. (2022) MicroRNA-29b Suppresses Inflammation and Protects Blood-Brain Barrier Integrity in Ischemic Stroke. Mediators of Inflammation, 2022, Article ID: 1755416. https://doi.org/10.1155/2022/1755416 |
[31] | Liu, Z., Tuo, Y.H. and Chen, J.W. (2017) NADPH Oxidase Inhibitor Regulates microRNAs with Improved Outcome after Mechanical Reperfusion. Journal of NeuroInterventional Surgery, 9, 702-706. https://doi.org/10.1136/neurintsurg-2016-012463 |
[32] | Ye, X., Song, H. and Hu, H. (2022) MiR-361-3p Alleviates Cerebral Ischemia-Reperfusion Injury by Targeting NACC1 through the PINK1/Parkin Pathway. Journal of Molecular Histology, 53, 357-367. https://doi.org/10.1007/s10735-021-10049-3 |
[33] | Ding, H., Gao, S. and Wang, L. (2019) Overexpression of MiR-582-5p Inhibits the Apoptosis of Neuronal Cells after Cerebral Ischemic Stroke through Regulating PAR-1/Rho/Rho Axis. Journal of Stroke and Cerebrovascular Diseases, 28, 149-155. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.023 |
[34] | Wei, N., Xiao, L. and Xue, R. (2016) MicroRNA-9 Mediates the Cell Apoptosis by Targeting Bcl2l11 in Ischemic Stroke. Molecular Neurobiology, 53, 6809-6817. https://doi.org/10.1007/s12035-015-9605-4 |
[35] | Wang, S., Aurora, A.B. and Johnson, B.A. (2008) The Endothelial-Specific MicroRNA MiR-126 Governs Vascular Integrity and Angiogenesis. Developmental Cell, 15, 261-271. https://doi.org/10.1016/j.devcel.2008.07.002 |
[36] | 张烨, 庄雪明, 王静, 等. miR-181b通过靶向PTEN调控缺血性脑卒中后血管新生的作用和机制研究[J]. 生物医学工程与临床, 2023, 27(3): 359-366. |
[37] | Kong, Y., Li, S. and Cheng, X. (2020) Brain Ischemia Significantly Alters microRNA Expression in Human Peripheral Blood Natural Killer Cells. Frontiers in Immunology, 11, Article 759. https://doi.org/10.3389/fimmu.2020.00759 |
[38] | Hao, L., Liu, M. and Gu, S. (2022) Retraction Note: Sedum Sarmentosum Bunge Extract Ameliorates Lipopolysaccharide-and D-Galactosamine-Induced Acute Liver Injury by Attenuating the Hedgehog Signaling Pathway via Regulation of MiR-124 Expression. BMC Complementary Medicine and Therapies, 22, Article No. 305. https://doi.org/10.1186/s12906-022-03796-7 |
[39] | Xue, W.S., Wang, N. and Wang, N.Y. (2019) MiR-145 Protects the Function of Neuronal Stem Cells through Targeting MAPK Pathway in the Treatment of Cerebral Ischemic Stroke Rat. Brain Research Bulletin, 144, 28-38. https://doi.org/10.1016/j.brainresbull.2018.08.023 |
[40] | 王鑫, 薛莉, 崔长富, 等. 血清miR-23a表达水平与急性脑梗死患者预后的相关性[J]. 南昌大学学报(医学版), 2021, 61(4): 44-48, 54. |
[41] | 马一杰, 陈小兵,罗素霞. miRNA指纹图谱及其在结直肠癌个体化治疗中的应用[J]. 胃肠病学和肝病学杂志, 2012, 21(11): 994-996. |