全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单位球丛上L(g)泛函变分问题
The Variational Problem of L(g) on Unit Tangent Sphere Bundles

DOI: 10.12677/pm.2024.145219, PP. 664-672

Keywords: 黎曼流形,切触流形,球丛,变分公式
Riemannian Manifold
, Contact Manifold, Tangent Sphere Bundle, Variational Formula

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了紧切触度量流形(M,η,g)上的L(g)泛函,该泛函是对Reeb向量场方向的里奇曲率在切触度量流形上的积分。特别地,我们考虑了紧黎曼流形的单位球丛这一特殊的切触度量流形。首先计算了L(g)泛函在球丛的底流形上的泛函形式。然后通过计算L泛函在底流形上的变分,我们发现当底流形是二维时,具有平坦性的黎曼度量是L泛函在底流形上的临界点。
This paper investigates theL(g)functional on contact metric manifold(M,η,g), which is the integral of the Ricci curvature along the Reeb vector field direction on the contact metric manifold. In particular, we consider the special case of the unit Tangent Sphere Bundles of a Riemannian manifold as a contact metric manifold. Firstly, we compute the functional form ofL(g)functional on the base manifold of the Tangent Sphere Bundles. Then, by computing the variation of the L functional on the base manifold, we find that Riemannian metrics with flatness are critical points of the L functional on the base manifold when the base manifold is two-dimensional.

References

[1]  Blair, D.E. (2010) Riemannian Geometry of Contact and Symplectic Manifolds. Birkh?user Boston, Boston.
https://doi.org/10.1007/978-0-8176-4959-3
[2]  Perrone, D. (1992) Torsion Tensor and Critical Metrics on Contact (2n 1)-Manifolds. Monatshefte für Mathematik, 114, 245-259.
https://doi.org/10.1007/BF01299383
[3]  Perrone, D. (1994) Tangent Sphere Bundles Satisfying ?ξ τ = 0. Journal of Geometry, 49, 178-188.
https://doi.org/10.1007/BF01228060
[4]  Blair, D.E. (1984) Critical Associated Metrics on Contact Manifolds. Journal of the Australian Mathematical Society, 37, 82-88.
https://doi.org/10.1017/S1446788700021753
[5]  Chern, S.S. and Hamilton, R.S. (1985) On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds. Springer Berlin Heidelberg.
https://doi.org/10.1007/BFb0084596
[6]  张剑锋. 关于Finsler流形上测地线的一点注记[J]. 浙江大学学报: 理学版, 2011, 38(3): 271-273.
[7]  Folland, G.B. (2001) How to Integrate a Polynomial over a Sphere. The American Mathematical Monthly, 108, 446-448.
https://doi.org/10.1080/00029890.2001.11919774
[8]  Catino, G. and Mastrolia, P. (2020) A Perspective on Canonical Riemannian Metrics. Birkh?user, Berlin.
https://doi.org/10.1007/978-3-030-57185-6
[9]  Besse, A.L. (2007) Einstein Manifolds. Springer.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133