全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

模糊Riesz空间中的模糊序基和模糊不交系统的性质
The Properties of Fuzzy Order Bases and Fuzzy Disjoint Systems in Fuzzy Riesz Spaces

DOI: 10.12677/pm.2024.145217, PP. 644-653

Keywords: 模糊Riesz空间,模糊序基,模糊不交系统
Fuzzy Riesz Spaces
, Fuzzy Order Base, Fuzzy Disjoint System

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要讨论了在模糊Riesz空间中的模糊序基和模糊不交系统的基本性质。首先讨论了由可数集{vn:n=1,2,?}生成的模糊带中元素的刻画。其次讨论了若Archimedean Riesz空间中模糊序稠理想是模糊super序稠的,则不交系统具有的一些基本性质。最后给出了模糊Archimedean Riesz空间中模糊理想具有可数或有限的模糊序基的条件,给出了模糊Archimedean Riesz空间模糊序可分的条件。
This paper discusses the fundamental properties of fuzzy order bases and fuzzy disjoint systems in fuzzy Riesz spaces. Firstly, it examines the characterization of elements in fuzzy bands generated by countable set{vn:n=1,2,?}. Then, it discusses some basic properties of non-intersecting systems if fuzzy order-dense ideals are fuzzy superorder dense in Archimedean Riesz spaces. Finally, it gives conditions for fuzzy ideals to have countable or finite fuzzy order bases in fuzzy Archimedean Riesz spaces and conditions for fuzzy order separability in fuzzy Archimedean Riesz spaces.

References

[1]  Zadeh, L.A. (1965) Fuzzy Sets. Information Control, 8, 338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X
[2]  Zadeh, L. (1971) Similarity Relations and Fuzzy Ordering. Information Science, 8, 177-200.
https://doi.org/10.1016/S0020-0255(71)80005-1
[3]  Venugopalan, P. (1992) Fuzzy Ordered Sets. Fuzzy Sets and Systems, 46, 221-226.
https://doi.org/10.1016/0165-0114(92)90134-P
[4]  Beg, I. and Islam, M. (1994) Fuzzy Riesz Spaces. Fuzzy Mathematics, 2, 211-241.
https://doi.org/10.1142/9789814447010_0001
[5]  Beg, I. and Islam, M.U. (1995) Fuzzy Ordered Linear Spaces. Fuzzy Mathematics, 3, 659-670.
[6]  Beg, I. (1997) σ-Complete Fuzzy Riesz Spaces. Results in Mathematics, 31, 292-299.
https://doi.org/10.1007/BF03322166
[7]  Beg, I. and Islam, M. (1997) Fuzzy Archimedean Spaces. Journal of Fuzzy Mathematics, 5, 413-424.
[8]  Liang, H. (2015) Fuzzy Riesz Subspaces, Fuzzy Ideals, Fuzzy Bands and Fuzzy Band Projections. Annals of the West University of Timisoara: Mathematics and Computer Science, 53, 77-108.
https://doi.org/10.1515/awutm-2015-0005
[9]  Iqbal, M. and Bashir, Z. (2020) The Existence of Fuzzy Dedekind Completion of Archimedean Fuzzy Riesz Space. Computational & Applied Mathematics, 39, 1-15.
https://doi.org/10.1007/s40314-020-1139-3
[10]  Cheng, N. and Chen, G.G. (2021) Fuzzy Rieszhomomophism on Fuzzy Riesz Space. arxiv:2104.07498v1.
[11]  Cheng, N., Liu, X. and Dai, J. (2022) Extension of Fuzzy Linear Operators on Fuzzy Riesz Spaces. Bulletin des Sciences Mathématiques, 179, 103168.
https://doi.org/10.1016/j.bulsci.2022.103168
[12]  赵娟娟, 程娜. 模糊Riesz空间中模糊不相交补和模糊投影带性质的研究[J]. 理论数学, 2022, 12(12): 2178-2188.
https://doi.org/10.12677/pm.2022.1212234
[13]  Shailendra, S. and Tiwari, S.P. (2023) L-Fuzzy Automata Theory: Some Characterizations via General Fuzzy Operators. Fuzzy Sets and Systems, 460, 103-142.
https://doi.org/10.1016/j.fss.2022.05.020

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133