全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

K-正则和 K-反演半群
K-Regular and K-Inversive Semigroups

DOI: 10.12677/pm.2024.145213, PP. 599-604

Keywords: -正则半群,-反演半群,格林关系
-Regular Semigroup
, -Inversive Semigroup, Green Relation

Full-Text   Cite this paper   Add to My Lib

Abstract:

格林关系在半群理论的发展中发挥着根本性作用。本文主要对几类由格林关系所确定的K-正则和K-反演半群进行了研究。首先介绍了K-正则和K-反演半群的相关概念,其次利用格林关系对K-正则半群进行了完整的刻画,同时也给出了两类特殊的K-反演半群的刻画,最后提出了刻画其他K-反演半群等相关问题。
Green’s relation plays a fundamental role in the development of semigroup theory. In this paper, several classes ofK-regular andK-inversive semigroups determined by Green’s relation are studied. Firstly, the related concepts ofK-regular andK-inversive semigroups are introduced. Secondly, a complete description ofK-regular semigroups is given by using Green’s relation. At the same time, two kinds of specialK-inversive semigroups are described. Finally, some related problems such as characterization of otherK-inversive semigroups are presented.

References

[1]  Green, J.A. (1951) On the Structure of Semigroups. Annals of Mathematics, 54, 163-172.
https://doi.org/10.2307/1969317
[2]  Petrich, M. (1984) Inverse Semigroups. Wiley, New York.
[3]  Howie, J.M. (1995) Fundamentals of Semigroup Theory. Clarendon Press, Oxford.
https://doi.org/10.1093/oso/9780198511946.001.0001
[4]  Lawson, M.V. (1998) Inverse Semigroups, the Theory of Partial Symmetries. World Scientific.
https://doi.org/10.1142/9789812816689
[5]  Petrich, M. and Reilly, N.R. (2024) Completely Regular Semigroup Varieties, Springer, Switzerland.
https://doi.org/10.1007/978-3-031-42891-3
[6]  Nambooripad, K.S.S. (1979) Structure of Regular Semigroups. Memoirs of the American Mathematical Society, 22, 224.
https://doi.org/10.1090/memo/0224
[7]  Mitsch, H. and Petrich, M. (2000) Basic Properties of e-Inversive Semigroups. Communications in Algebra, 28, 5169-5182.
https://doi.org/10.1080/00927870008827148
[8]  Mitsch, H. (1990) Subdirect Products of E-Inverse Semigroups. Journal of the Australian Mathematical Society, 48, 66-78.
https://doi.org/10.1017/S1446788700035199
[9]  Weipoltshammer, B. (2002) Certain Congruences on E-Inversive E-Semigroups. Semigroup Forum, 65, 233-248.
https://doi.org/10.1007/s002330010131
[10]  Gigon, R.S. (2020) Bands of E-Inversive Unipotent Semigroups. Bulletin of the Malaysian Mathematical Sciences Society, 43, 2861-2874.
https://doi.org/10.1007/s40840-019-00835-4
[11]  Mary, X. (2011) On Generalized Inverses and Green’s Relations. Linear Algebra and Its Applications, 434, 1836-1844.
https://doi.org/10.1016/j.laa.2010.11.045
[12]  Zhu, H.H., Chen, J.L. and Patricio, P. (2016) Further Results on the Inverse Along an Element in Semigroups and Rings. Linear Multilinear Algebra, 64, 393-403.
https://doi.org/10.1080/03081087.2015.1043716
[13]  Ciric, M., Ignjatovic, J. and Stanimirovic, P. (2023) Outer Inverses in Semigroups Belonging to the Prescribed Green’s Equivalence Classes. Semigroup Forum, 107, 251-293.
https://doi.org/10.1007/s00233-023-10382-x
[14]  Chen, J.L. and Zhang, X.X. (2024) Algebraic Theory of Generalized Inverses. Science Press, Beijing & Springer, Singapore.
https://doi.org/10.1007/978-981-99-8285-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133