|
Pure Mathematics 2024
Clifford半群上的罗巴算子
|
Abstract:
代数上的罗巴算子的理论已有丰富的成果。2021年,Guo,Lang和Sheng提出了群上罗巴算子的概念。最近,作为群上罗巴算子的推广,Catino,Mazzotta和Stefanelli又提出了Clifford半群上的(权为1的)罗巴算子。本文首先给出了Clifford半群上罗巴算子的一些新性质和新构造方法,然后提出了Clifford半群上权为?1的罗巴算子的概念,证明了Clifford半群上的罗巴算子和权为?1的罗巴算子之间存在一一对应关系,推广了群上罗巴算子的相关结果。
The theory of Rota-Baxter operators on algebras has been fruitful. In 2021, Guo, Lang and Sheng have introduced the notion of Rota-Baxter operators on groups. Recently, as a generalization of Rota-Baxter operators on groups, Catino, Mazzotta, and Stefanelli have proposed Rota-Baxter operators with weight 1 on Clifford semigroups. In this paper, we first give some new properties and construction methods of Rota-Baxter operators with weight 1 on Clifford semigroups, then propose the concept of Rota-Baxter operators with weight ?1 on Clifford semigroups, and prove that there is a one-to-one correspondence between Rota-Baxter operators of weight 1 and ?1 on Clifford semigroups. This extends the results of Rota-Baxter operators on groups.
[1] | Baxter, G. (1960) An Analytic Problem Whose Solution Follows from a Simple Algebraic Identity. Pacific Journal of Mathematics, 10, 731-742. https://doi.org/10.2140/pjm.1960.10.731 |
[2] | Guo, L. (2012) An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics. Vol. 4, International Press/ Higher Education Press, Somerville/Beijing. |
[3] | Guo, L., Lang, H. and Sheng, Y. (2021) Integration and Geometrization of Rota-Baxter Lie Algebras. Advances in Mathematics, 387, 107834. https://doi.org/10.1016/j.aim.2021.107834 |
[4] | Guarnieri, L. and Vendramin, L. (2017) Skew Braces and Yang-Baxter Equation. Mathematics of Computation, 86, 2519-2534. https://doi.org/10.1090/mcom/3161 |
[5] | Bardakov, V.G. and Gubarev, V. (2022) Rota-Baxter Groups, Skew Left Braces, and the Yang-Baxter Equation. Journal of Algebra, 596, 328-351. https://doi.org/10.1016/j.jalgebra.2021.12.036 |
[6] | Bardakov, V.G. and Gubarev, V. (2023) Rota-Baxter Operators on Groups. Proceedings Mathematical Sciences, 133, Article Number 4. https://doi.org/10.1007/s12044-023-00723-9 |
[7] | Catino, F., Mazzotta, M. and Stefanelli, P. (2023) Rota-Baxter Operators on Clifford Semigroups and the Yang-Baxter Equation. Journal of Algebra, 622, 587-613. https://doi.org/10.1016/j.jalgebra.2023.02.013 |
[8] | Das, A. and Rathee, N. (2023) Extensions and Automorphisms of Rota-Baxter Groups. Journal of Algebra, 636, 626-665. https://doi.org/10.1016/j.jalgebra.2023.09.006 |
[9] | Gao, X., Guo, L., Liu, Y. and Zhu, Z.C. (2023) Operated Groups, Differential Groups and Rota-Baxter Groups with an Emphasis on the Free Objects. Communications in Algebra, 51, 4481-500. https://doi.org/10.1080/00927872.2023.2212775 |
[10] | Goncharov, M. (2021) Rota-Baxter Operators on Cocommutative Hopf Algebras, Journal of Algebra, 582, 39-56. https://doi.org/10.1016/j.jalgebra.2021.04.024 |
[11] | Li, Z. and Wang, S. (2023) Rota-Baxter Systems and Skew Trusses. Journal of Algebra, 623, 447-480. https://doi.org/10.1016/j.jalgebra.2023.02.022 |
[12] | Rathee, N. and Singh, M. (2023) Relative Rota-Baxter Groups and Skew LEF Braces. arXiv:2305.00922. |
[13] | Howie, J.M. (1995) Fundamentals of Semigroup Theory, London Mathematical Society Monographs. New Series, Vol. 12, The Clarendon Press, Oxford University Press, New York. |