全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clifford半群上的罗巴算子
Rota-Baxter Operators on Clifford Semigroups

DOI: 10.12677/pm.2024.145212, PP. 590-598

Keywords: Clifford半群,罗巴算子
Clifford Semigroups
, Rota-Baxter Operators

Full-Text   Cite this paper   Add to My Lib

Abstract:

代数上的罗巴算子的理论已有丰富的成果。2021年,Guo,Lang和Sheng提出了群上罗巴算子的概念。最近,作为群上罗巴算子的推广,Catino,Mazzotta和Stefanelli又提出了Clifford半群上的(权为1的)罗巴算子。本文首先给出了Clifford半群上罗巴算子的一些新性质和新构造方法,然后提出了Clifford半群上权为?1的罗巴算子的概念,证明了Clifford半群上的罗巴算子和权为?1的罗巴算子之间存在一一对应关系,推广了群上罗巴算子的相关结果。
The theory of Rota-Baxter operators on algebras has been fruitful. In 2021, Guo, Lang and Sheng have introduced the notion of Rota-Baxter operators on groups. Recently, as a generalization of Rota-Baxter operators on groups, Catino, Mazzotta, and Stefanelli have proposed Rota-Baxter operators with weight 1 on Clifford semigroups. In this paper, we first give some new properties and construction methods of Rota-Baxter operators with weight 1 on Clifford semigroups, then propose the concept of Rota-Baxter operators with weight ?1 on Clifford semigroups, and prove that there is a one-to-one correspondence between Rota-Baxter operators of weight 1 and ?1 on Clifford semigroups. This extends the results of Rota-Baxter operators on groups.

References

[1]  Baxter, G. (1960) An Analytic Problem Whose Solution Follows from a Simple Algebraic Identity. Pacific Journal of Mathematics, 10, 731-742.
https://doi.org/10.2140/pjm.1960.10.731
[2]  Guo, L. (2012) An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics. Vol. 4, International Press/ Higher Education Press, Somerville/Beijing.
[3]  Guo, L., Lang, H. and Sheng, Y. (2021) Integration and Geometrization of Rota-Baxter Lie Algebras. Advances in Mathematics, 387, 107834.
https://doi.org/10.1016/j.aim.2021.107834
[4]  Guarnieri, L. and Vendramin, L. (2017) Skew Braces and Yang-Baxter Equation. Mathematics of Computation, 86, 2519-2534.
https://doi.org/10.1090/mcom/3161
[5]  Bardakov, V.G. and Gubarev, V. (2022) Rota-Baxter Groups, Skew Left Braces, and the Yang-Baxter Equation. Journal of Algebra, 596, 328-351.
https://doi.org/10.1016/j.jalgebra.2021.12.036
[6]  Bardakov, V.G. and Gubarev, V. (2023) Rota-Baxter Operators on Groups. Proceedings Mathematical Sciences, 133, Article Number 4.
https://doi.org/10.1007/s12044-023-00723-9
[7]  Catino, F., Mazzotta, M. and Stefanelli, P. (2023) Rota-Baxter Operators on Clifford Semigroups and the Yang-Baxter Equation. Journal of Algebra, 622, 587-613.
https://doi.org/10.1016/j.jalgebra.2023.02.013
[8]  Das, A. and Rathee, N. (2023) Extensions and Automorphisms of Rota-Baxter Groups. Journal of Algebra, 636, 626-665.
https://doi.org/10.1016/j.jalgebra.2023.09.006
[9]  Gao, X., Guo, L., Liu, Y. and Zhu, Z.C. (2023) Operated Groups, Differential Groups and Rota-Baxter Groups with an Emphasis on the Free Objects. Communications in Algebra, 51, 4481-500.
https://doi.org/10.1080/00927872.2023.2212775
[10]  Goncharov, M. (2021) Rota-Baxter Operators on Cocommutative Hopf Algebras, Journal of Algebra, 582, 39-56.
https://doi.org/10.1016/j.jalgebra.2021.04.024
[11]  Li, Z. and Wang, S. (2023) Rota-Baxter Systems and Skew Trusses. Journal of Algebra, 623, 447-480.
https://doi.org/10.1016/j.jalgebra.2023.02.022
[12]  Rathee, N. and Singh, M. (2023) Relative Rota-Baxter Groups and Skew LEF Braces. arXiv:2305.00922.
[13]  Howie, J.M. (1995) Fundamentals of Semigroup Theory, London Mathematical Society Monographs. New Series, Vol. 12, The Clarendon Press, Oxford University Press, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133