全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

模糊f代数的基本性质研究
The Study of Elementary Property of Fuzzy f Algebra

DOI: 10.12677/pm.2024.145207, PP. 537-547

Keywords: 模糊f代数,模糊Archimedean-f代数
Fuzzy f Algebra
, Fuzzy Archimedean f Algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文首先讨论了模糊f代数中任意不交补是模糊双边理想,并且研究了在模糊f代数中,结合律成立的情况下的部分关系式。然后给出了模糊正交算子的定义,并研究了两个模糊正交算子相等的条件。最后介绍了模糊Archimedean-f代数,并讨论其中f2fg等于零时的条件。
This article first discussed that any disjoint complement in fuzzy f algebra is a fuzzy l-ideal, and studied some relationships in fuzzy f algebra when the associative law holds. Then, the definition of fuzzy orthogonal operators was given, and the conditions for two fuzzy orthogonal operators to be equal were studied. Finally, the fuzzy Archimedean f algebra was introduced, and the conditions under which f2 and fg equal zero were discussed.

References

[1]  Beg, I. and Islam, M. (1994) Fuzzy Riesz Spaces. Fuzzy Mathematics, 2, 211-241.
https://doi.org/10.1142/9789814447010_0001
[2]  Hong, L. (2015) Fuzzy Riesz Subspaces, Fuzzy Ideals, Fuzzy Bands and Fuzzy Band Projections. Seria Matematica-Informatica, 53, 77-108.
https://doi.org/10.1515/awutm-2015-0005
[3]  Guirao, J.L.G., Iqbal, M., Bashir, Z., et al. (2021) A Study on Fuzzy Order Bounded Linear Operators in Fuzzy RieszSpaces. Mathematics, 9, 1512.
https://doi.org/10.3390/math9131512
[4]  Cheng, N., Liu, X. and Dai, J. (2022) Extension of Fuzzy Linear Operators on Fuzzy Riesz Spaces. Bulletin des Sciences Mathématiques, 179, 103168.
https://doi.org/10.1016/j.bulsci.2022.103168
[5]  Zadeh, L.A. (1965) Fuzzy Sets. Information Control, 8, 338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X
[6]  Venugopalan, P. (1992) Fuzzy Ordered Sets. Fuzzy Sets and Systems, 46, 221-226.
https://doi.org/10.1016/0165-0114(92)90134-P
[7]  Iqbal, M. and Bashir, Z. (2020) The Existence of Fuzzy Dedekind Completion of Archimedean Fuzzy Riesz Space. Computational & Applied Mathematics, 39, 1-15.
https://doi.org/10.1007/s40314-020-1139-3
[8]  Beg, I. and Islam, M.U. (1995) Fuzzy Ordered Linear Spaces. Fuzzy Mathematics, 3, 659-670.
[9]  Beg, I. and Islam, M. (1997) Fuzzy Archimedean Spaces. Journal of Fuzzy Mathematics, 5, 413-424.
[10]  Beg, I. (1997) σ-Complete Fuzzy Riesz Spaces. Results in Mathematics, 31, 292-299.
https://doi.org/10.1007/BF03322166
[11]  张禾瑞. 近世代数基础[M]. 北京: 高等教育出版社, 1978.
[12]  周姮媛. 模糊Riesz代数的基本性质研究[J]. 理论数学, 2024, 14(4): 126-136.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133