全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

紧致有限差分方法求解全离散波动方程
Compact Finite Difference Method for Solving Fully Discrete Wave Equations

DOI: 10.12677/pm.2024.145204, PP. 509-518

Keywords: 波动方程,紧致有限差分法,稳定性,误差估计
Wave Equation
, Compact Finite Difference Method, Stability, Error Estimate

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对整数阶波动方程,给出了一种基于紧致有限差分方法的隐式全离散格式。该格式在时间方向采用中心差分格式来离散,在空间方向采用紧致中心差商的权平均来离散。离散格式的稳定性分析及误差估计表明,该离散格式在时间方向达到二阶收敛,空间方向达到四阶收敛。并且通过数值实验证明该离散格式的收敛阶为O(τ2h4)。
This article proposes an implicit fully discrete scheme based on the compact finite difference method for integer order wave equations. This discretization scheme uses a central difference scheme for discretization in the temporal direction and a compact central difference quotient weighted average for discretization in the spatial direction. The stability analysis and error estimation of the discrete format indicate that it achieves second-order convergence in the temporal direction and fourth-order convergence in the spatial direction. And numerical experiments have shown that the convergence order of the discrete format isO(τ2h4).

References

[1]  Du, R., Cao, W.R. and Sun, Z.Z. (2010) A Compact Difference Scheme for the Fractional Diffusion-Wave Equation. Applied Mathematical Modeling, 34, 2998-3007.
https://doi.org/10.1016/j.apm.2010.01.008
[2]  安文静, 王含逍, 张新东. 波动方程的一种空间四届精度离散格式构造及理论分析[J]. 山东师范大学学报: 自然科学版, 2022, 37(3): 253-259.
[3]  廖洪林. 发展方程高阶差分方法的误差估计[D]: [博士学位论文]. 南京: 东南大学, 2010.
[4]  朱爱玲, 寻朔. 一维波动方程的显式差分外推法[J]. 山东师范大学学报: 自然科学版, 2016, 31(3): 6-9.
[5]  李书存. 非线性Dirac方程的高精度数值方法[D]: [博士学位论文]. 湘潭: 湘潭大学, 2020.
[6]  李小纲. 流体力学中双曲守恒律方程的高精度差分方法研究[D]: [博士学位论文]. 西安: 西安理工大学, 2020.
[7]  Gao, G.H. and Sun, Z.Z. (2011) A Compact Finite Difference Scheme for the Fractional Sub-Diffusion Equations. Journal of Computational Physics, 230, 586-595.
https://doi.org/10.1016/j.jcp.2010.10.007
[8]  Gao, G.H. and Sun, Z.Z. (2013) Compact Difference Schemes for the Heat Equation with Neumann Boundary Conditions (II). Numerical Methods for Partial Difference Equations, 29, 1459-1486.
https://doi.org/10.1002/num.21760
[9]  Ren, J.C., Sun, Z.Z. and Zhao, X. (2013) Compact Difference Scheme for the Fractional Sub-Diffusion Equation with Neumann Boundary Conditions. Journal of Computational Physics, 232, 456-467.
https://doi.org/10.1016/j.jcp.2012.08.026
[10]  Li, L.Y., Jiang, Z.W. and Yin, Z. (2018) Fourth-Order Compact Finite Difference Method for Solving Two-Dimensional Convection-Diffusion Equation. Advances in Difference Equations, 1-24.
https://doi.org/10.1186/s13662-018-1652-5
[11]  Liao, W.Y., Zhu, J.P. and Khaliq, A.Q.M. (2006) A Fourth-Order Compact Algorithm for System of Nonlinear Reaction-Diffusion Equations with Neumann Boundary Conditions. Numerical Methods for Partial Differential Equations, 22, 600-616.
https://doi.org/10.1002/num.20111
[12]  Sun, Z.Z. (2009) Compact Difference Schemes for Heat Equation with Neumann Boundary Conditions. Numerical Methods for Partial Differential Equations, 25, 1320-1341.
https://doi.org/10.1002/num.20402
[13]  Nandal, S. and Pandey, D.N. (2021) Second Order Compact Difference Scheme for Time Fractional Sub-Diffusion Fourth-Order Neutral Delay Differential Equations. Differential Equations and Dynamical Systems, 29, 69-86.
https://doi.org/10.1007/s12591-020-00527-7
[14]  Zhang, X.D., Huang, P.Z., Feng, X.L. and Wei, L.L. (2013) Finite Element Method for Two-Dimensional Time-Fractional Tricomi-Type Equations. Numerical Methods for Partial Differential Equations, 29, 1081-1096.
https://doi.org/10.1002/num.21745

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133