全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双碳目标下考虑居民不同意愿下充电的优化调度策略
The Optimal Charging Scheduling Strategy Considering Different Wills of Residents under the Dual Carbon Target

DOI: 10.12677/pm.2024.145201, PP. 465-478

Keywords: 有序充电,动态电价,蒙特卡洛,性格因子,电动汽车,意愿指数
Orderly Charging
, Dynamic Electricity Price, Monte Carlo, Personality Factors, Electric Vehicles, Willingness Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对电动汽车(electrical vehicle, EV)在居民小区无序充电对电网系统容易产生严重隐患等问题,本文提出了考虑车主的不同意愿和性格的优化调度策略。研究电动汽车用户意愿具有多样性和不确定性的特点,考虑到居民用户的不同意愿以及用户的性格因素制定的动态分时电价,引导EV在多模式电价中做出选择。在满足用户意愿的前提下,进行优化调度,使其充电成本最低化。采用遗传算法(GA)求解优化模型,获得最优多模式动态电价和EV充放电策略。仿真结果表明了不仅可以有效地减小电网的峰谷差,还可以降低电动汽车用户的充电费用,充分验证了该策略的有效性与合理性。
In order to solve the problem that electric vehicle (EV) unordered charging in residential areas is easy to cause serious hidden dangers to the power grid system, this paper proposes an optimal scheduling strategy that takes into account the different wishes and personalities of owners. This paper studies the diversity and uncertainty of electric vehicle users’ wishes, and takes into account the different wishes of resident users and the personality factors of users to make a dynamic TOU price to guide EV to make a choice among multi-mode electricity prices. Under the premise of meeting the wishes of users, the optimal scheduling is carried out to minimize the charging cost. Genetic algorithm (GA) was used to solve the optimization model, and the optimal multi-mode dynamic electricity price and EV charging and discharging strategy were obtained. The simulation results show that not only the peak-valley difference of the power grid can be effectively reduced, but also the charging cost of EV users can be reduced, which fully verifies the effectiveness and rationality of the strategy.

References

[1]  李婕. 回眸2022, 十组数据看亮点[N]. 人民日报海外版, 2022-12-29(004).
[2]  沈志顺, 韩友国, 顾民, 等. 新能源汽车排队充电策略研究[J]. 汽车实用技术, 2019(7): 22-23.
https://doi.org/10.16638/j.cnki.1671-7988.2019.07.006
[3]  郭豪杰, 崔双喜. 基于多目标的电动汽车有序充电策略研究[J]. 现代电子技术, 2022, 45(17): 145-150.
https://doi.org/10.16652/j.issn.1004-373x.2022.17.027
[4]  陈星曲, 尹常永. 电动汽车有序充电策略研究综述[J]. 电子世界, 2022(2): 13-15.
https://doi.org/10.19353/j.cnki.dzsj.2022.02.006
[5]  夏娟娟, 周明坚, 袁帅, 等. 电动汽车峰谷分时电价时段充电优化模型[J]. 电源技术, 2016, 40(9): 1848?1850.
[6]  马英姿, 马兆兴. 基于博弈算法的电动汽车有序充电优化及效益分析[J]. 电力工程技术, 2021, 40(5): 10-16.
[7]  汪天允, 张浩. 基于人工鱼群算法的电动汽车优化充电策略[EB/OL].
http://kns.cnki.net/kcms/detail/23.1202.th.20210118.0959.002.html, 2022?06?06.
[8]  邓慧琼, 张晓飞, 曾凡淦, 郑玉燚, 付庆, 李培强. 动态分时电价机制下的电动汽车充放电调度策略研究[J]. 智慧电力, 2023, 51(3): 59-66.
[9]  Zhou, K., Cheng, L., Wen, L., et al. (2020) A Coordinated Charging Scheduling Method for Electric Vehicles Considering Different Charging Demands. Energy, 213, 118882.
https://doi.org/10.1016/j.energy.2020.118882
[10]  Wang, N., Li, B., Duan, Y., et al. (2021) A Multi-Energy Scheduling Strategy for Orderly Charging and Discharging of Electric Vehicles Based on Multi-Objective Particle Swarm Optimization. Sustainable Energy Technologies and Assessments, 44, 101037.
https://doi.org/10.1016/j.seta.2021.101037
[11]  严俊, 严凤. 峰谷分时电价背景下的居民电动汽车有序充放电策略[J]. 电力系统保护与控制, 2018, 46(15): 127?134.
[12]  苏海锋, 梁志瑞. 基于峰谷电价的家用电动汽车居民小区有序充电控制方法[J]. 电力自动化设备, 2015, 35(6): 17?22.
[13]  程杉, 赵孟雨, 魏昭彬. 计及动态电价的电动汽车充放电优化调度[J]. 电力系统及其自动化学报, 2021, 33(10): 31?36.
[14]  杨勇. 小区电动汽车群有序充电策略优化[D]: [硕士学位论文]. 济南: 山东大学, 2016.
[15]  刘志珍, 杨勇, 屈东明, 王建, 黑桐. 基于分时电价的电动汽车群有序充电策略研究[J]. 电机与控制学报, 2017, 21(10): 1-7.
https://doi.org/10.15938/j.emc.2017.10.001
[16]  孔建飞, 马存华. 基于群控群充技术公交充电场站电气设计要点[J]. 智能建筑电气技术, 2022, 16(3): 82-83 88.
https://doi.org/10.13857/j.cnki.cn11-5589/tu.2022.03.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133