全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带有环境病毒量和疫苗影响的传染病模型平衡点的分析
Analysis of Equilibrium Points of a Class of Infectious Disease Models with Environmental Viral Load and Vaccine Effects

DOI: 10.12677/pm.2024.145199, PP. 447-456

Keywords: 传染病模型,基本再生数,疫苗,平衡点稳定性
Infectious Disease Modeling
, Basic Regeneration Number, Vaccines, Equilibrium Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了一类带有环境病毒量和疫苗影响的SLEIRVW传染病动力学模型,对模型进行了深入的动力学分析和计算,通过下一代矩阵法计算了模型的基本再生数R0,利用Hurwitz判据和矩阵理论分析了平衡点的局部稳定性,这项研究聚焦于一种传染病动态模型,特点是综合考虑了环境病毒量和疫苗对传播的影响,得出了以下关键结论:1) 当基本再生数R0小于1时,传染病无法持续传播,这是传染病控制的理想状态。2) 当R0大于1时,为了有效地控制传染病传播,需要采取措施降低人们的接触率,并提高疫苗接种的覆盖率。这两个因素对传染病的传播有着重要而积极的影响。所以降低接触率以及提高疫苗接种效果能使得基本再生数R0减小,即能够有效防治该类传染病。
This paper investigates a class of SLEIRVW infectious disease dynamics models with the effects of environmental viral load and vaccines, provides in-depth dynamics analysis and calculations of the models, calculates the basic regeneration number R0 of the models by the next-generation matrix method, and analyzes the local stability of the equilibrium points using Hurwitz’s criterion and matrix theory. This study focuses on an infectious disease dynamics model featuring the integrated consideration of the study focuses on the dynamics of an infectious disease, characterized by a combination of environmental viral load and vaccine effects on transmission, and draws the following key conclusions: 1) When the fundamental regeneration number, R0, is less than 1, the infectious disease cannot be spread sustainably, which is the ideal state for infectious disease control. 2) When R0 is greater than 1, effective control of the spread of the infectious disease requires measures to reduce the rate of exposure to the population and to increase the coverage of vaccinations. These two factors have an important and positive impact on the spread of infectious diseases. Therefore, reducing the contact rate and improving the effectiveness of vaccination can make the basic regeneration number R0 decrease, that is, it can effectively control this type of infectious disease.

References

[1]  Kerendrick, W.O. and McKendrick, A.G. (1927) A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115, 700-721.
https://doi.org/10.1098/rspa.1927.0118
[2]  Kermack, W.O. and McKendrick, A.G. (1932) Contributions to the Mathematical Theory of Epidemics. II.—The Problem of Endemicity. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 138, 55-83.
https://doi.org/10.1098/rspa.1932.0171
[3]  Hethcote, H.W. (1994) A Thousand and One Epidemic Models. In: Levin, S.A., Ed., Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, Vol. 100, Springer, Berlin, 504-515.
https://doi.org/10.1007/978-3-642-50124-1_29
[4]  Hethcote, H.W. (2000) The Mathematics of Infectious Disease. SIAM Review, 42, 599-653.
https://doi.org/10.1137/S0036144500371907
[5]  Li, M.-T., Sun, G.-Q., Zhang, J., et al. (2020) Analysis of COVID-19 Transmission in Shanxi Province with Discrete Time Imported Cases. Mathematical Biosciences and Engineering, 17, 3710-3720.
https://doi.org/10.3934/mbe.2020208
[6]  Chang, X.H., Liu, M.X., Jin, Z., et al. (2020) Studying on the Impact of Media Coverage on the Spread of COVID-19 in Hubei Province, China. Mathematical Biosciences and Engineering, 17, 3147-3159.
https://doi.org/10.3934/mbe.2020178
[7]  张菊平, 李云, 姚美萍, 等. 武汉市COVID-19疫情与易感人群软隔离强度关系分析[J]. 应用数学学报, 2020, 43(2): 162-173.
[8]  董闪闪. EV71手足口病模型的研究[D]: [硕士学位论文]. 武汉: 华中师范大学, 2018.
[9]  黄森忠, 彭志行, 靳祯. 新型冠状病毒肺炎疫情控制策略研究: 效率评估及建议[J]. 中国科学: 数学, 2020, 50(6): 885-898.
[10]  郭尊光, 李明涛, 常利利, 等. 基于反应扩散方程研究新型冠状病毒肺炎在武汉早期传播特征[J]. 工程数学学报, 2020, 37(4): 391-402.
[11]  魏凤英, 王金杰, 徐铣明, 等. 全球新型冠状病毒肺炎疫情发展趋势预测[J]. 疾病监测, 2020, 35(6): 467-472.
[12]  Gumel, A.B., Iboi, E.A., Ngonghala, C.N., et al. (2020) A Primer on Using Mathematics to Understand COVID-19 Dynamics: Modeling, Analysis and Simulations. Infectious Disease Modelling, 6, 148-168.
https://doi.org/10.1016/j.idm.2020.11.005
[13]  Mohsen, A.A., Al-Husseiny, H.F., Hattaf, K., et al. (2021) A Mathematical Model for the Dynamics of COVID-19 Pandemic Involving the Infective Immigrants. Iraqi Journal of Science, 62, 295-307.
https://doi.org/10.24996/ijs.2021.62.1.28
[14]  Kamara, A.A., Mouanguissa, L.N. and Barasa, G.O. (2021) Mathematical Modelling of the COVID-19 Pandemic with Demographic Effects. Journal of the Egyptian Mathematical Society, 29, Article No. 8.
https://doi.org/10.1186/s42787-021-00118-7
[15]  Zamir, M., Shah, K., Nadeem, F., et al. (2021) Threshold Conditions for Global Stability of Disease Free State of COVID-19. Results in Physics, 21, Article 103784.
https://doi.org/10.1016/j.rinp.2020.103784
[16]  Van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180, 29-48.
https://doi.org/10.1016/S0025-5564(02)00108-6
[17]  Foy, B.H., Wahl, B., Mehta, K., et al. (2021) Comparing COVID-19 Vaccine Allocation Strategies in India: A Mathematical Modelling Study. International Journal of Infectious Diseases, 103, 431-438.
https://doi.org/10.1016/j.ijid.2020.12.075
[18]  Shen, M., Zu, J., Fairley, C.K., et al. (2021) Projected COVID-19 Epidemic in the United States in the Context of the Effectiveness of a Potential Vaccine and Implications for Social Distancing and Face Mask Use. Vaccine, 39, 2295-2302.
https://doi.org/10.1016/j.vaccine.2021.02.056
[19]  马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004.
[20]  崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
[21]  Sanjoy, B., Kumar, R.P., et al. (2022) Preventive Control Strategy on Second Wave of Covid-19 Pandemic Model Incorporating Lock-Down Effect. Alexandria Engineering Journal, 61, 7265-7276.
https://doi.org/10.1016/j.aej.2021.12.066

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133