全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带有混合奇异项和测度项的分数阶p-Laplace方程解的存在性问题
Existence of Solutions for Fractional p-Laplacian Problems with Mixed Singular Nonlinearities and Radon Measure

DOI: 10.12677/pm.2024.145198, PP. 433-446

Keywords: 分数阶p-Laplace方程,混合奇异项,测度项,近似问题
Fractional p-Laplacian
, Mixed Singular Nonlinearities, Radon Measure, Approximating Problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究下列带有混合奇异项和测度项的分数阶p-Laplace方程:
This paper studies the following fractional p-Laplacian problem with mixed singular nonlinearities and Radon measure:

References

[1]  Crandall, M.G., Rabinowitz, P.H. and Tartar, L. (1977) On a Dirichlet Problem with a Singular Nonlinearity. Communications in Partial Differential Equations, 2, 193-222.
https://doi.org/10.1080/03605307708820029
[2]  Coclite, M.M. and Palmieri, G. (1989) On a Singular Nonlinear Dirichlet Problem. Communications in Partial Differential Equations Partial Differential Equations, 14, 1315-1327.
https://doi.org/10.1080/03605308908820656
[3]  Diaz, I.I., Morel, J.M. and Oswald, L. (1987) An Elliptic Equation with Singular Nonlinearity. Communications in Partial Differential Equations Partial Differential Equations, 12, 1333-1344.
https://doi.org/10.1080/03605308708820531
[4]  Ghergu, M. and R?dulescu, V. (2003) Sublinear Singular Elliptic Problems with Two Parameters. Journal of Differential Equations, 195, 520-536.
https://doi.org/10.1016/S0022-0396(03)00105-0
[5]  Ghergu, M. and R?dulescu, V. (2005) On a Class of Sublinear Singular Elliptic Problems with Convection Term. Journal of Mathematical Analysis and Applications, 311, 635-646.
https://doi.org/10.1016/j.jmaa.2005.03.012
[6]  Boccardo, L. and Orsina, L. (2010) Semilinear Elliptic Equations with Singular Nonlinearities. Calculus of Variations and Partial Differential Equations, 37, 363-380.
https://doi.org/10.1007/s00526-009-0266-x
[7]  Barrios, B., De Bonis, I., Medina, M. and Peral, I. (2015) Semilinear Problems for the Fractional Laplacian with a Singular Nonlinearity. Open Mathematics, 13, 390-407.
https://doi.org/10.1515/math-2015-0038
[8]  Canino, A., Sciunzi, B. and Trombetta, A. (2016) Existence and Uniqueness for p-Laplace Equations Involving Singular Nonlinearities. Nodea-Nonlinear Differential Equations and Applications, 23, 1-18.
https://doi.org/10.1007/s00030-016-0361-6
[9]  Canino, A., Montoro, L., Sciunzi, B. and Squassina, M. (2017) Nonlocal Problems with Singular Nonlinaertiy. Bulletin of Mathematical Biology, 141, 223-250.
https://doi.org/10.1016/j.bulsci.2017.01.002
[10]  Masoud, B.A. and Mahmoud, H. (2021) A Fractional Laplacian Problem with Mixed Singular Nonlinearities and Nonregular Data. Journal of Ellipitic and Parabolic Equations, 7, 784-814.
https://doi.org/10.1007/s41808-021-00113-0
[11]  Youssfi, A. and Ould Mohmoud, G. (2020) On Singular Equations Involving Fractional Laplacian. Acta Mathematica Scientia, 40, 1289-1315.
https://doi.org/10.1007/s10473-020-0509-7
[12]  Demengel, F. and Demengel, G. (2012) Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. Springer, London; EDP Sciences, Les Ulis.
https://doi.org/10.1007/978-1-4471-2807-6
[13]  Dinezza, E., Palatucci, G. and Valdinoci, E. (2012) Hitchhiker’s Guide to the Fractional Sobolev Spaces. Bulletin of the Malaysian Mathematical Sciences Society, 136, 521-573.
https://doi.org/10.1016/j.bulsci.2011.12.004
[14]  Benilan, P., Boccardo L., Gallouet, T., et al. (1995) An L1-Theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations. Annali Della Scuola Normal Superiore Di Pisa-Class Di Scienze, 22, 241-273.
[15]  Iannizzotto, A., Mosconi, S. and Squassina, M. (2016) Global Regularity for the Fractional p-Laplacian. Revista Matematica Iberoamericana, 32, 1353-1392.
https://doi.org/10.4171/rmi/921

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133