|
Pure Mathematics 2024
具有Logistic源的三维趋化模型的适定性研究
|
Abstract:
本文研究了一类在全空间?3上具有奇性和Logistic源的趋化模型的整体适定性。 通过Cole-Hopf型变换,将带奇性的趋化系统转化为非奇性的趋化系统,然后通过能量估计的方法建立该系统解的全局适定性。
In this thesis, we study the global well-posedness of a singular chemotaxis system with logistic source in three dimensional whole spaces. Through the Cole-Hopf type transformation, the singular chemotaxis is converted into a non-singular hyperbolic system,
and then the global well-posedness of the transformed model solution is established
through the energy estimation method.
[1] | Zeng, Y. and Zhao, K. (2020) Recent Results for the Logarithmic Keller-Segel-Fisher/Kpp
System. Boletim da Sociedade Paranaense de Matematica, 38, 37-48.
https://doi.org/10.5269/bspm.v38i7.44494 |
[2] | Stevens, A. and Othmer, H.G. (1997) Aggregation, Blowup, and Collapse: The ABC's of Taxis
in Reinforced Random walks. SIAM Journal on Applied Mathematics, 57, 1044-1081.
https://doi.org/10.1137/S0036139995288976 |
[3] | Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M. (2015) Toward a Mathematical Theory
of Keller-Segel Models of Pattern Formation in Biological Tissues. Mathematical Models and
Methods in Applied Sciences, 25, 1663-1763. https://doi.org/10.1142/S021820251550044X |
[4] | Hillen, T. and Painter, K.J. (2009) A User's Guide to PDE Models for Chemotaxis. Journal
of Mathematical Biology, 58, 183-217. https://doi.org/10.1007/s00285-008-0201-3 |
[5] | Horstmann, D. (2004) From 1970 Until Present: The Keller-Segel Model in Chemotaxis and
Its Consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung, 51, 103-165. |
[6] | Kalinin, Y.V., Jiang, L., Tu, Y. and Wu, M. (2009) Logarithmic Sensing in Escherichia coli
Bacterial Chemotaxis. Biophysical Journal, 96, 2439-2448.
https://doi.org/10.1016/j.bpj.2008.10.027 |
[7] | Keller, E.F. and Segel, L.A. (1971) Traveling Bands of Chemotactic Bacteria: A Theoretical
Analysis. Journal of Theoretical Biology, 30, 235-248.
https://doi.org/10.1016/0022-5193(71)90051-8 |
[8] | Levine, H.A., Sleeman, B.D. and Nilsen-Hamilton, M. (2000) A Mathematical Model for the
Roles of Pericytes and Macrophages in the Initiation of Angiogenesis. I. The Role of Protease
Inhibitors in Preventing Angiogenesis. Mathematical Biosciences, 168, 77-115.
https://doi.org/10.1016/S0025-5564(00)00034-1 |
[9] | Sleeman, B.D. and Levine, H.A. (1997) A System of Reaction Diffusion Equations Arising in
the Theory of Reinforced RandomWalks. SIAM Journal on Applied Mathematics, 57, 683-730.
https://doi.org/10.1137/S0036139995291106 |
[10] | Wang, Z. and Hillen, T. (2008) Shock Formation in a Chemotaxis Model. Mathematical Meth-
ods in the Applied Sciences, 31, 45-70. https://doi.org/10.1002/mma.898 |
[11] | Zeng, Y. and Zhao, K. (2019) On the Logarithmic Keller-Segel-Fisher/Kpp System. Discrete
& Continuous Dynamical Systems: Series A, 39, 5365-5402.
https://doi.org/10.3934/dcds.2019220 |
[12] | Zeng, Y. and Zhao, K. (2020) Optimal Decay Rates for a Chemotaxis Model with Logistic
Growth, Logarithmic Sensitivity and Density-Dependent Production/Consumption Rate.
Journal of Differential Equations, 268, 1379-1411. https://doi.org/10.1016/j.jde.2019.08.050 |
[13] | Wang, Z.-A., Xiang, Z. and Yu, P. (2016) Asymptotic Dynamics on a SINGULAR Chemotaxis
System Modeling Onset of Tumor Angiogenesis. Journal of Differential Equations, 260, 2225-
2258. https://doi.org/10.1016/j.jde.2015.09.063 |
[14] | Li, D., Li, T. and Zhao, K. (2011) On a Hyperbolic-Parabolic System Modeling Chemotaxis.
Mathematical Models and Methods in Applied Sciences, 21, 1631-1650.
https://doi.org/10.1142/S0218202511005519 |
[15] | Fefferman, C.L., McCormick, D.S., Robinson, J.C. and Rodrigo, J.L. (2014) Higher Order
Commutator Estimates and Local Existence for the Non-resistive MHD Equations and Related
Models. Journal of Functional Analysis, 267, 1035-1056.
https://doi.org/10.1016/j.jfa.2014.03.021 |
[16] | Tello, J.I. and Winkler, M. (2007) A Chemotaxis System with LOGISTIC Source. Communi-
cations in Partial Differential Equations, 32, 849-877.
https://doi.org/10.1080/03605300701319003 |
[17] | Winkler, M. (2008) Chemotaxis with Logistic Source: Very Weak Global Solutions and Their
Boundedness Properties. Journal of Mathematical Analysis and Applications, 348, 708-729.
https://doi.org/10.1016/j.jmaa.2008.07.071 |
[18] | Winkler, M. (2014) How Far Can Chemotactic Cross-Diffusion Enforce Exceeding Carrying
Capacities. Journal of Nonlinear Science, 24, 809-855.
https://doi.org/10.1007/s00332-014-9205-x |
[19] | Cao, X. (2014) Boundedness in a Quasilinear Parabolic-Parabolic Keller-Segel System with
Logistic Source. Journal of Mathematical Analysis and Applications, 412, 181-188.
https://doi.org/10.1016/j.jmaa.2013.10.061 |
[20] | Cao, X. and Zheng, S. (2014) Boundedness of Solutions to a Quasilinear Parabolic-Elliptic
Keller-Segel System with Logistic Source. Mathematical Methods in the Applied Sciences, 37,
2326-2330. https://doi.org/10.1002/mma.2992 |
[21] | Winkler, M. (2010) Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis
System with Logistic Source. Communications in Partial Differential Equations, 35, 1516-1537.
https://doi.org/10.1080/03605300903473426 |