|
Bergman空间上一类斜Toeplitz算子的不变子空间
|
Abstract:
本文研究了单位圆盘的Bergman空间上斜Toeplitz算子的不变子空间问题,分别利用m和p1,p2,?,pn的奇偶性和大小关系充分描述了Bergman空间的有限维子空间span{zp1,zp2,?,zpn}是以函数φ(z)=zm为符号的斜Toeplitz算子Bφ及其共轭算子Bφ?的不变子空间的充要条件,以及该子空间何时是算子Bφ的约化子空间,这将有利于对算子Bφ结构特征的认识。
In this paper we study the problem of invariant subspaces of slant Toeplitz operators on the Bergman space of the unit disk, and respectively describe the necessary and sufficient condition for the finite dimensional subspacesspan{zp1,zp2,?,zpn}of Bergman space to be invariant subspaces of slant Toeplitz operatorsBφand their conjugate operatorsBφ?with symbolφ(z)=zmby utilizing the parity and size relationship of m andp1,p2,?,pn, as well as when this subspace is a reducing subspace of the operatorBφ. This will benefit the knowledge of the structural features of the operatorBφ.
[1] | Beurling, A. (1949) On Two Problems Concerning Linear Transformation in Hilbert Spaces. Acta Mathematica, 81, 239-255. https://doi.org/10.1007/BF02395019 |
[2] | Apostol, C., Bercovici, H., Foias, C. and Pearcy, C. (1985) Invariant Subspaces, Dilation Theory, and the Structure of the Predual of a Dual Algebra, I. Journal of Functional Analysis, 63, 369-404. https://doi.org/10.1016/0022-1236(85)90093-X |
[3] | Ho, M.C. (1996) Properties of Slant Toeplitz Operators. Indiana University Mathematics Journal, 45, 843-862. https://doi.org/10.1512/iumj.1996.45.1973 |
[4] | Ho, M.C. (1997) Spectra of Slant Toeplitz Operators with Continuous Symbol. Michigan Mathematical Journal, 44, 157-166. https://doi.org/10.1307/mmj/1029005627 |
[5] | Ho, M.C. (1997) Adjoints of Slant Toeplitz Operators. Integral Equations and Operator Theory, 29, 301-312. https://doi.org/10.1007/BF01320703 |
[6] | Ho, M.C. (2001) Adjoints of Slant Toeplitz Operators II. Integral Equations and Operator Theory, 41, 179-188. https://doi.org/10.1007/BF01295304 |
[7] | Arora, S.C. and Batra, R. (2003) On Generalized Slant Toeplitz Operators. Indian Journal of Mathematics, 45, 121-134. |
[8] | Arora, S.C. and Batra, R. (2004) On Generalized Slant Toeplitz Operators with Continuous Symbols. Yokohama Mathematical Journal, 51, 1-9. |
[9] | Arora, S.C. and Batra, R. (2005) Generalized Slant Toeplitz Operators on H2. Mathematische Nachrichten, 278, 347-355. https://doi.org/10.1002/mana.200310244 |
[10] | Yang, J., Leng, A.P. and Lu, Y.F. (2007) k-Order Slant Toeplitz Operators on the Bergman Space. Northeastern Mathematical Journal, 23, 403-412. |
[11] | Lu, Y.F., Liu, C.M. and Yang, J. (2010) Commutativity of kth-Order Slant Toeplitz Operators. Mathematische Nachrichten, 283, 1304-1313. https://doi.org/10.1002/mana.200710100 |
[12] | 章国凤, 于涛. Dirichlet空间上的斜Toeplitz算子[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 50-55. |
[13] | 朱洪敏. 单位多圆盘上Bergman空间上的k阶斜Toeplitz算子的一些研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2012. |
[14] | Liu, C.M. and Lu, Y.F. (2013) Product and Commutativity of kth-Order Slant Toeplitz Operators. Abstract and Applied Analysis, 45, 900-914. |
[15] | Liu, C.M. and Lu, Y.F. (2013) Product and Commutativity of Slant Toeplitz Operators. Journal of Mathematical Research with Applications, 33, 122-126. |
[16] | 刘朝美, 倪维丹. Bergman空间上k阶斜Toeplitz算子的正规性及亚正规性[J]. 大连交通大学学报, 2016, 37(1): 113-116. |
[17] | 刘朝美, 高娇娇. 双圆盘的Bergman空间上k阶斜Toeplitz算子的交换性[J]. 大连交通大学学报, 2017, 38(5): 115-117, 120. |
[18] | Singh, S.K. and Gupta, A. (2017) kth-Order Slant Toeplitz Operators on the Fock Space. Advances in Operator Theory, 2, 318-333. |
[19] | Datt, G. and Ohri, N. (2018) Properties of Slant Toeplitz Operators on the Torus. Malaysian Journal of Mathematical Sciences, 12, 195-209. |
[20] | Datt, G. and Ohri, N. (2019) Slant Toeplitz Operators on the Lebesgue Space of the Torus. Khayyam Journal of Mathematics, 5, 65-76. |
[21] | Datt, G. and Pandey, S.K. (2020) Compression of Slant Toeplitz Operators on the Hardy Space of n-Dimensional Torus. Czechoslovak Mathematical Journal, 70, 997-1018. https://doi.org/10.21136/CMJ.2020.0088-19 |
[22] | Hazarika, M. and Marik, S. (2020) Reducing and Minimal Reducing Subspaces of Slant Toeplitz Operators. Advances in Operator Theory, 5, 336-346. https://doi.org/10.1007/s43036-019-00022-z |
[23] | 杜巧玲, 许安见. Hardy空间上的斜Toeplitz算子的极小约化子空间[J]. 重庆理工大学学报(自然科学), 2021, 35(8): 224-229. |
[24] | Pandey, S.K. and Datt, G. (2021) Multivariate Version of Slant Toeplitz Operators on the Lebesgue Space. Asian-European Journal of Mathematics, 14, Article ID: 2150152. https://doi.org/10.1142/S1793557121501527 |
[25] | Hazarika, M. and Marik, S. (2021) Toeplitz and Slant Toeplitz Operators on the Polydisk. Arab Journal of Mathematical Sciences, 27, 73-93. https://doi.org/10.1016/j.ajmsc.2019.02.003 |
[26] | ?anucha, B. and Michalska, M. (2022) Compressions of kth-Order Slant Toeplitz Operators to Model Spaces. Lithuanian Mathematical Journal, 62, 69-87. https://doi.org/10.1007/s10986-021-09548-3 |
[27] | 赵彩竹, 许安见. 单位圆周Lebesgue空间的3阶斜Toeplitz算子的极小约化子空间[J]. 重庆师范大学学报(自然科学版), 2023, 40(4): 117-121. |