|
常微分方程的多区域配置方法
|
Abstract:
以等距节点为插值节点,构造常微分方程的Lagrange插值逼近算法格式,将常微分方程转化成矩阵方程求解。通过将区域分解的方式提高算法精度,数值实验证明本文所提算法的高精度,此方法可以广泛应用到其他常微分方程的求解中。
Using equidistant nodes as interpolation nodes, construct a Lagrange interpolation approximation algorithm format for ordinary differential equations, and transform the ordinary differential equations into matrix equations for solution. By decomposing regions, the algorithm accuracy is improved, and numerical experiments have demonstrated the high accuracy of the proposed algorithm. This method can be widely applied to the solution of other ordinary differential equations.
[1] | 王高雄. 常微分方程[M]. 第3版. 北京: 高等教育出版社, 2006. |
[2] | 倪兴. 常微分方程数值解法及其应用[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2010. https://doi.org/10.7666/d.y1705078 |
[3] | 李焕荣. 随机常微分方程的几种数值求解方法及其应用[J]. 重庆工商大学学报(自然科学版), 2021, 38(6): 82-88. https://doi.org/10.16055/j.issn.1672-058X.2021.0006.011 |
[4] | 庄清渠, 王金平. 四阶常微分方程的Birkhoff配点法[J]. 华侨大学学报(自然科学版), 2018, 39(2): 306-311. https://doi.org/10.11830/ISSN.1000-5013.201707005 |
[5] | 户永清, 陈正文. 一种二阶常微分方程的数值解法[J]. 四川文理学院学报, 2023, 33(5): 39-44. https://doi.org/10.3969/j.issn.1674-5248.2023.05.008 |
[6] | 唐仁献. Lagrange基本插值多项式的性质及应用[J]. 零陵学院学报, 1995(S1): 49-51. |
[7] | 乔炎, 王川, 王秦. Burgers方程混合问题的Lagrange插值逼近[J]. 应用数学进展, 2022, 11(5): 2507-2514. https://doi.org/10.12677/AAM.2022.115265 |
[8] | 马亚楠, 王天军, 李冰冰. Korteweg-de Vries 方程的时空谱配置方法[J]. 数值计算与计算机应用, 2021, 42(4): 351-360. |
[9] | Tan, J. and Wang, T.-J. (2024) A Multi-Domain Spectral Collocation Method for the Fokker-Planck Equation in an Infinite Channel. Mathematics and Computers in Simulation, 220, 533-551. https://doi.org/10.1016/j.matcom.2024.02.014 |
[10] | Shen, J., Tang, T. and Wang, L.L. (2011) Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, Vol. 41, Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71041-7 |