|
一类受污染的渔业资源管理模型的最优脉冲控制
|
Abstract:
本文建立了一类处于污染环境中的渔业捕捞脉冲控制模型。考虑环境受到污染后,鱼类会吸收环境中的污染物,发生持续死亡现象。同时在目标函数中加入处理受污染的鱼类的额外成本,利用最优脉冲控制原理进行理论分析,得出了该模型的最优脉冲捕获时刻和相应的种群水平,最后利用数值模拟,验证所得结论。
The paper establishes a fishing pulse control model in a polluted environment, taking into account the absorption of pollutants by fish and their subsequent mortality. Additionally, the objective function incorporates the extra cost of dealing with contaminated fish, and theoretical analysis is conducted using the optimal impulse control principle to determine the optimal capture time and corresponding population level. Finally, numerical simulation is employed to validate the conclusions.
[1] | Gulati, C.S, Mubayi, A., et al. (2021) Dynamical Analysis, Optimum Control and Pattern Formation in the Biological pest (EFSB) Control Model. Chaos, Solitons & Fractals, 147, 110920. https://doi.org/10.1016/j.chaos.2021.110920 |
[2] | 黄辉. 广义Logistic模型的优化开发[J]. 吉首大学学报, 1998, 19(2): 39-44. |
[3] | Drawert, B., Griesemer, M., Petzold, L.R., et al. (2017) Using Stochastic Epidemiological Models to Evaluate Conservation Strategies for Endangered Amphibians. Journal of the Royal Society Interface, 14, 20170480. https://doi.org/10.1098/rsif.2017.0480 |
[4] | Svetoslav, I.N. (1999) Impulsive Controllability and Optimization Problem in Population Dynamics. Nonlinear Analysis, 36, 881-890. https://doi.org/10.1016/S0362-546X(97)00627-5 |
[5] | Blaquiere, A. (1977) Differential Games with Piecewise Continuous Trajectories. Lecture Notes in Control and Information, Vol. 3, Springer Verlag, Berlin, 34-66. https://doi.org/10.1007/BFb0009063 |
[6] | 赵立纯, 张庆灵, 杨启昌. Logistic脉冲系统的最优脉冲控制[J]. 系统工程理论与实践, 2003, 23(9): 41-47. |
[7] | 李秀颖. 几类资源管理模型的最优脉冲控制[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2012. |
[8] | 郑卓, 吕莎, 赵立纯. 麦蚜生态系统折叠突变模型的最优脉冲控制[J]. 鞍山师范学院学报, 2013, 15(6): 1-4 |
[9] | 郭海瑞, 赵立纯, 刘敬娜. 基于人工湿地藻类种群模型的最优脉冲控制[J]. 鞍山师范学院学报, 2017, 19(4): 1-5. |
[10] | Cohen, Y. (1982) Applications of Optimal Impulse Control to Optimal Foraging Problems. Application of Control Theory in Ecology. Spriger Verlag, London, 39-56. https://doi.org/10.1007/978-3-642-46616-8_3 |
[11] | Yin, B. and Zeng. B. (2024) Optimal Control and Feedback Control for Nonlinear Impulsive Evolutionary Equations. Quaestiones Mathematicae, 47, 375-398. https://doi.org/10.2989/16073606.2023.2228548 |
[12] | Li, W., Ji, J. and Huang, L. (2022) Global Dynamics Analysis of a Water Hyacinth Fish Ecological System under Impulsive Control. Journal of the Franklin Institute, 359, 10628-10652. https://doi.org/10.1016/j.jfranklin.2022.09.030 |
[13] | Sharma, A., Gupta, B., Dhar, J., et al. (2022) Stability Analysis and Optimal Impulsive Harvesting for a Delayed Stage-Structured Self Dependent Two Compartment Commercial Fishery Model. International Journal of Dynamics and Control, 10, 1119-1129. https://doi.org/10.1007/s40435-021-00866-5 |
[14] | Das, S., Das, P. and Das, P. (2021) Chemical and Biological Control of Parasite-Borne Disease Schistosomiasis: An Impulsive Optimal Control Approach. Nonlinear Dynamics, 104, 603-628. https://doi.org/10.1007/s11071-021-06262-0 |
[15] | Zhao, Z., Pang, L. and Song, X. (2017) Optimal Control of Phytoplankton-Fish Model with the Impulsive Feedback Control. Nonlinear Dynamics, 88, 2003-2011. https://doi.org/10.1007/s11071-017-3358-8 |
[16] | Hritonenko, N., Kato, N. and Yatsenko, Y. (2023) Impulse Controls in Optimal Harvesting of Age-Structured Populations. International Journal off Biomathematics, 16, 2250128. https://doi.org/10.1142/S1793524522501285 |
[17] | 汪纪锋, 党晓圆, 张毅. 现代控制理论[M]. 北京: 人民邮电出版社, 2013, 264. |