全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于新循环算法的低旁瓣非周期单模序列设计
Design of Low Sidelobe Aperiodic Unimodular Sequences Based on New Cycling Algorithm

DOI: 10.12677/aam.2024.135234, PP. 2460-2468

Keywords: 快速傅里叶变换,单模非周期序列,自相关旁瓣,优点因子
Fast Fourier Transform
, Unimodular Aperiodic Sequences, Autocorrelation Sidelobe, Merit Factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对雷达波形设计中旁瓣过高的问题,提出了一种基于快速傅里叶变换的新循环算法的单模非周期序列优化方法。首先,构建了以最小化积分旁瓣水平(integrated-sidelobe-level, ISL)为优化准则,以单模序列为约束条件的优化问题。由于该优化问题的非凸性,提出一种基于新循环算法的迭代优化算法对其进行求解。此外,还在理论上改进其算法的收敛性,确保它在迭代过程中能稳定地收敛到最优解或局部最优解。仿真实验结果表明,该方法有效降低非周期单模序列自相关旁瓣,提高单模非周期序列的优点因子。
Because of the issue of high sidelobes in radar waveform design, we proposed a new optimization method for unimodular aperiodic sequences based on fast Fourier transform cyclic algorithm. Firstly, an optimization problem is constructed with the minimization of integrated sidelobe level (ISL) as the optimization criterion and single-mode sequences as constraint conditions. Due to the non-convex nature of the optimization problem, a new iterative optimization algorithm based on a new cycling algorithm is proposed to solve it. Furthermore, improvements are being made in the theoretical convergence of its algorithm, ensuring that it can stably converge to the optimal or local optimal solution during the iterative process. Simulation experiment results show that the method effectively reduces the autocorrelation sidelobes of single-mode non-periodic sequences, and improves the merit factor of single-mode non-periodic sequences.

References

[1]  赵金珊, 全英汇, 刘代军, 张瑞, 邢孟道. 基于遗传算法的OFDM雷达低旁瓣波形优化设计[J]. 航空兵器, 2021, 28(5): 76-80.
[2]  王佳欢, 范平志, 时巧, 等. 一种具有多普勒容忍性的通感一体化波形设计[J]. 雷达学报, 2023, 12(2): 275-286.
[3]  冯日博, 冯西安, 谭伟杰, 祝朝晖. 基于新循环算法的多相编码波形优化[J]. 探测与控制学报, 2015, 37(1): 11-15.
[4]  Pishrow, M.M. and Abouei, J. (2023) A Sequential Constraint Relaxation Framework to Design Phase-Coded Sequences for Radar Systems. Digital Signal Processing, 136, 1-5.
https://doi.org/10.1016/j.dsp.2023.103985

[5]  Stimson, G.W. (1998) Introduction to Airborne Radar. SciTech Publishing, New York City.
https://doi.org/10.1049/SBRA101E

[6]  Yu. G.Y. and Liang, J.L. (2018) Sequence Set Design with Accurately Controlled Correlation Properties. IEEE Transactions on Aerospace and Electronic Systems, 54, 3023-3046.
https://doi.org/10.1109/TAES.2018.2836778

[7]  Nunn, C.J. and Coxson, G.E. (2008) Best-Known Autocorrelation Peak Sidelobe Levels for Binary Codes of Length 71 to 105. IEEE Transactions on Aerospace and Electronic Systems, 44, 392-395.
https://doi.org/10.1109/TAES.2008.4517015

[8]  Jedwab, J. (2004) A Survey of the Merit Factor Problem for Binary Sequences. SEquences and Their Applications, Korea, 24-28 October 2004, 30-55.
https://doi.org/10.1007/11423461_2

[9]  Golay, M. (1983) The Merit Factor of Legendre Sequences (corresp.). IEEE Transactions on Information Theory, 29, 934-936.
https://doi.org/10.1109/TIT.1983.1056744

[10]  Rudin, W. (1959) Some Theorems on Fourier Coefficients. Proceedings of the American Mathematical Society, 10, 855-859.
https://doi.org/10.1090/S0002-9939-1959-0116184-5

[11]  Jensen, J.M., Jensen, H.E. and Hoholdt, T. (1991) The Merit Factor of Binary Sequences Related to Difference Sets. IEEE Transactions on Information Theory, 37, 617-626.
https://doi.org/10.1109/18.79917

[12]  Gold, R. (1967) Optimal Binary Sequences for Spread Spectrum Multiplexing(corresp.). IEEE Transactions on Information Theory, 13, 619-621.
https://doi.org/10.1109/TIT.1967.1054048

[13]  Mow, W.H., et al. (2015) New Evolutionary Search for Long Low Autocorrelation Binary Sequences. IEEE Transactions on Aerospace and Electronic Systems, 51, 290-303.
https://doi.org/10.1109/TAES.2014.130518

[14]  Stoica, P., He, H. and Li, J. (2009) New Algorithms for Designing Unimodular Sequences with Good Correlation Properties. IEEE Trans. Signal Processing, 57, 1415-1425.
https://doi.org/10.1109/TSP.2009.2012562

[15]  He, H., Li, J. and Stoica, P. (2012) Waveform Design for Active Sensing Systems: A Computational Approach. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139095174

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133