|
通讯网络连接的最短路径问题探究
|
Abstract:
本文研究了旅行商模型(TSP)的蚁群法算法和树模型的最小生成树法,构建了139个节点的通讯网络线路,结果表明采用TSP模型的蚁群法得到单连通网络线路总长度在320附近,低于平均值;而树模型的最小生成树法得到了更佳优化的具有唯一性的网络连接线路,其总路径最小值为254。从网络连接图中明显的看出后者在连通性和抗摧毁性上明显的优于前者。
In this paper, the Ant Clony Optimization of the Travelling Salesman Problem (TSP) and the Minimum Spanning Tree of the tree model was studied. Communication network lines with 139 nodes are constructed. The results show that the total length of simply connected network lines obtained by Ant Clony Optimization is around 320, which is lower than the average. The Minimum Spanning Tree has a better simply connected network lines, and its total path minimum value is 254. It is clear from the network connection diagram that the latter is significantly superior to the former in terms of connectivity and destructibility.
[1] | 李炫秋, 黄斐君, 景鹏飞. 基于量子蚁群算法的旅行商问题求解及算法评估[J/OL]. 大学物理: 1-8. http://kns.cnki.net/kcms/detail/11.1910.O4.20230607.1406.001.html, 2023-09-25. |
[2] | 王树禾. 图论[M]. 第二版. 北京: 科学出版社, 2013: 28-221. |
[3] | 叶其孝, 姜启源, 等, 译. 数学建模[M]. 第4版, 北京: 机械工业出版社, 2019: 212-233. |
[4] | Erchao, L. and Kuankuan, Q. (2023) Ant Colony Algorithm for Path Planning Based on Grid Feature Point Extraction. Journal of Shanghai Jiaotong University (Science), 2. |
[5] | 金妲颖. 基于蚁群算法的X物流企业配送中心车辆调度系统设计与实现[D]: 硕士学位论文. 北京: 北京交通大学, 2019. |
[6] | 严玉芳. 基于Matlab的蚁群算法求解旅行商问题[J]. 数字技术与应用, 2022, 40(7): 103-105. https://doi.org/10.19695/j.cnki.cn12-1369.2022.07.33 |
[7] | 耿振余, 陈治湘, 黄路炜, 等. 软计算方法及其军事应用[M]. 北京: 国防工业出版社, 2015. |
[8] | 申洪涛, 李飞, 史轮, 等. 基于最小生成树路由的电力线载波通信数据融合算法[J]. 太赫兹科学与电子信息学报, 2023, 21(8): 1002-1006. |
[9] | 汪天飞, 邹进, 张军. 图的方法建模[J]. 数学建模与数学实验, 2013(1): 265-274. |