|
常微分方程组初值问题的Lagrange插值逼近方法
|
Abstract:
常微分方程的快速发展和很多学科有着紧密的关系,随着众多的数学家对其研究的不断加深,极大地推动了现代数学的发展。因此,本文研究拉格朗日插值(Lagrange)逼近方法在常微分方程组初值问题上的应用,推导出Lagrange插值法的逼近算法,求解常微分方程组初值问题的数值解,也就是通过具体的例子,利用Lagrange插值逼近方法构造相对应的数值格式,寻找误差和多项式次数的关系,将结果可视化,最后对相应的误差结果进行分析。数值结果表明Lagrange插值逼近方法具有较高的精度。
The rapid development of ordinary differential equations is closely related to many disciplines, and with the continuous deepening of the research of many mathematicians, the development of modern mathematics has been greatly promoted. Therefore, this paper studies the application of the Lagrange interpolation approximation method in the initial value problem of ordinary differential equations, deduces the approximation algorithm of the Lagrange interpolation approximation method, and solves the numerical solution of the initial value problem of ordinary differential equations. The numerical results show that the Lagrange interpolation approximation method has high accuracy.
[1] | 周义仓, 靳祯, 秦军林. 常微分方程及其应用[M]. 北京: 科学出版社, 2003. |
[2] | 罗环环, 范胜君. 常微分方程初值问题解的存在唯一性[J]. 吉林大学学报(理学版), 2015, 53(2): 166-172. |
[3] | 洪世煌, 胡适耕. Banach 空间中二阶常微分方程初值问题解的存在唯一性[J]. 应用数学和力学, 1999(3): 60-66. |
[4] | 肖学军. 奇妙的欧拉公式[J]. 初中生世界, 2021(12): 46. |
[5] | 李佳成, 杨君. 利用欧拉公式解方程(组) [J]. 中学生数学, 2021(22): 31-32. |
[6] | 李忠杰. 常微分方程初值问题RK法和多步法[J]. 黑龙江科技信息, 2010(18): 199 309. |
[7] | Lambert, J.D. (1977) The Initial Value Problem for Ordinary Differential Equations. State of the Art in Numerical Analysis, 451-500. https://api.semanticscholar.org/CorpusID:116979416 |
[8] | 吕勇, 陈传淼. 带奇异系数的二阶常微分方程初值问题的有限元解[J]. 湖南工业大学学报, 2014, 18(2): 33-35. |
[9] | Benko, D., Biles, D.C., Robinson, M.P. and Spraker, J.S. (2008) Nystr?m Methods and Singular Second-Order Differential Equations. Computers & Mathematics with Applications, 56, 1975-1980. https://doi.org/10.1016/j.camwa.2008.04.023 |
[10] | Benko, D., Biles, D.C., Robinson, M.P. and Spraker, J.S. (2009) Numerical Approximation for Singular Second Order Differential Equations. Mathematical and Computer Modelling, 49, 11. https://doi.org/10.1016/j.mcm.2008.08.018 |
[11] | 乔炎, 王川, 王秦. Burgers方程混合问题的Lagrange插值逼近[J]. 应用数学进展, 2022, 11(5): 8. |