|
基于多尺度去噪正则化和深度神经网络的相位恢复
|
Abstract:
相位恢复问题是恢复信号丢失或损坏的相位信息,以实现信号的准确分析、处理和重建。相位恢复在许多领域都有广泛的应用,例如通信系统、图像处理和计算机视觉、雷达和无线电频谱感知和生物医学工程等。然而,传统的相位恢复算法在噪声存在的情况下很难实现恢复任务。幸运的是,各种先进算法的不断提出和改进以及深度学习的兴起为处理相位恢复问题提供了很大的帮助。为了解决单个去噪正则项不能涵盖图像的全部先验信息的问题,本文考虑多尺度的去噪正则化求解带有噪声的相位恢复问题,它基于去噪正则化框架,而且它通过在优化问题中引入正则化项来实现去除图像中的噪声。为了解决将去噪正则化和FFDNet一起考虑求解带有噪声的相位恢复问题时恢复效果不好的问题,本文充分利用DnCNN和FFDNet这两种去噪器的优点,在相位恢复的过程中分情况使用这两种去噪器。最后本文通过数值实验表明了改进策略在视觉效果和量化数值上都有更加优异的表现。
Phase retrieval problem is to recover the lost or damaged phase information in order to realize the accurate analysis, processing and reconstruction of the signal. Phase retrieval is widely used in many fields, such as communication systems, image processing and computer vision, radar and radio spectrum sensing and biomedical engineering. However, the traditional phase retrieval algorithms are difficult to achieve the recovery task in the presence of noise. Fortunately, the continuous proposal and improvement of various advanced algorithms and the rise of deep learning provide great help to deal with the phase retrieval problem. In order to solve the problem that a single denoising regularization cannot cover all the prior information of the image, this paper considers multi-scale denoising regularizations to solve the phase retrieval problem disturbed by noise, which is based on the regularization by denoising framework and it removes the noise in the image by introducing a regularization term into the optimization problem. Additionally, in order to solve the problem of poor recovery effect when regularization by denoising and FFDNet are considered together to solve the phase retrieval contaminated with noise, this paper makes full use of the advantages of DnCNN and FFDNet, so these two kinds of denoising in different cases are combined to deal with the phase retrieval. Finally, numerical experiments show that the improved strategies have better performance in visual effect and quantitative value.
[1] | Shechtman, Y., Eldar, Y.C., Cohen, O., et al. (2015) Phase Retrieval with Application to Optical Imaging: A Contemporary Overview. IEEE Signal Processing Magazine, 32, 87-109. https://doi.org/10.1109/MSP.2014.2352673 |
[2] | Carlsson, M. and Gerosa, D. (2019) On Phase Retrieval via Matrix Completion and the Estimation of Low Rank PSD Matrices. Inverse Problems, 36, Article ID: 015006. https://doi.org/10.1088/1361-6420/ab4e6d |
[3] | Zhuang, Z. (2019) On Stability of Generalized Phase Retrieval and Generalized Affine Phase Retrieval. Journal of Inequalities and Applications, 2019, Article No. 14. https://doi.org/10.1186/s13660-019-1968-z |
[4] | Qin, S., Zhang, Y.B., Wang, H.Q., et al. (2020) Simple Accurate Model-Based Phase Diversity Phase Retrieval Algorithm for Wavefront Sensing in High-Resolution Optical Imaging Systems. IET Image Processing, 14, 4513-4519. https://doi.org/10.1049/iet-ipr.2020.1075 |
[5] | Jiang, Z.L., et al. (2020) Phase Retrieval of On-Axis Digital Holography with Modified Coherent Diffraction Imaging. IEEE Photonics Journal, 12, Article ID: 6901712. https://doi.org/10.1109/JPHOT.2020.3035805 |
[6] | Palamodov V. (2020) An Analytic Method of Phase Retrieval for X-Ray Phase Contrast Imaging. Journal of Fourier Analysis and Applications, 26, Article No. 79. https://doi.org/10.1007/s00041-020-09787-x |
[7] | Luo, Q., Lin, S.J. and Wang, H.X. (2021) Robust Phase Retrieval via Median-Truncated Smoothed Amplitude Flow. Inverse Problems in Science and Engineering, 29, 3024-3040. https://doi.org/10.1080/17415977.2021.1966426 |
[8] | Alaifari, R. and Wellershoff, M. (2021) Phase Retrieval from Sampled Gabor Transform Magnitudes: Counterexamples. Journal of Fourier Analysis and Applications, 28, Article No. 9. https://doi.org/10.1007/s00041-021-09901-7 |
[9] | Song, J.W., Liu, K., Sowmya, A., et al. (2022) Super-Resolution Phase Retrieval Network for Single-Pattern Structured Light 3D Imaging. IEEE Transactions on Image Processing, 32, 537-549. |
[10] | Gerchberg, R.W. (1972) A Practical Algorithm for the Determination of Plane from Image and Diffraction Pictures. Optik, 35, 237-246. |
[11] | Fienup, J.R. (1984) Reconstruction and Synthesis Applications of an Iterative Algorithm. Transformations in Optical Signal Processing, 373, 147-160. https://doi.org/10.1117/12.934545 |
[12] | Cui, J.Z., Sha, H.Z., Yang, W.F. and Yu, R. (2023) Antiferromagnetic Imaging via Ptychographic Phase Retrieval. Science Bulletin, 69, 466-472. |
[13] | Shao, Z.H., Li, L.D., et al. (2023) Cancelable Face Recognition Using Phase Retrieval and Complex Principal Component Analysis Network. Machine Vision and Applications, 35, Article No. 12, https://doi.org/10.1007/s00138-023-01496-x |
[14] | Moravec, M.L., Romberg, J.K. and Baraniuk, R.G. (2007) Compressive Phase Retrieval. Wavelets XII. SPIE, Vol. 6701, 712-722. https://doi.org/10.1117/12.736360 |
[15] | Schniter, P. and Rangan, S. (2014) Compressive Phase Retrieval via Generalized Approximate Message Passing. IEEE Transactions on Signal Processing, 63, 1043-1055. https://doi.org/10.1109/TSP.2014.2386294 |
[16] | Venkatakrishnan, S.V., Bouman, C.A. and Wohlberg, B. (2013) Plug-and-Play Priors for Model Based Reconstruction. 2013 IEEE Global Conference on Signal and Information Processing, Austin, 3-5 December 2013, 945-948. https://doi.org/10.1109/GlobalSIP.2013.6737048 |
[17] | Romano, Y., Elad, M. and Milanfar, P. (2017) The Little Engine That Could: Regularization by Denoising (RED). SIAM Journal on Imaging Sciences, 10, 1804-1844. https://doi.org/10.1137/16M1102884 |
[18] | Metzler, C., Schniter, P., Veeraraghavan, A., et al. (2018) prDeep: Robust Phase Retrieval with a Flexible Deep Network. International Conference on Machine Learning, Stockholm, 10-15 July 2018, 3501-3510. |
[19] | Zuo, C., Qian, J., Feng, S., et al. (2022) Deep Learning in Optical Metrology: A Review. Light: Science & Applications, 11, Article No. 39. https://doi.org/10.1038/s41377-022-00714-x |
[20] | Tayal, K., Lai, C.H., Manekar, R., et al. (2020) Unlocking Inverse Problems Using Deep Learning: Breaking Symmetries in Phase Retrieval. NeurIPS 2020 Workshop on Deep Learning and Inverse Problems. |
[21] | Zhang, K., Zuo, W., Chen, Y., et al. (2017) Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 26, 3142-3155. https://doi.org/10.1109/TIP.2017.2662206 |
[22] | Zhang, K., Zuo, W. and Zhang, L. (2018) FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Transactions on Image Processing, 27, 4608-4622. https://doi.org/10.1109/TIP.2018.2839891 |
[23] | Goldstein, T., Studer, C. and Baraniuk, R. (2014) A Field Guide to Forward-Backward Splitting with a FASTA Implementation. |
[24] | 方莉, 张萍. 经典图像去噪算法研究综述[J]. 工业控制计算机, 2010, 23(11): 73-74. https://doi.org/10.3969/j.issn.1001-182X.2010.11.034 |
[25] | 孙玉宝, 韦志辉, 吴敏, 等. 稀疏性正则化的图像泊松去噪算法[J]. 电子学报, 2011, 39(2): 285-290. |
[26] | 关新平, 赵立兴, 唐英干. 图像去噪混合滤波方法[J]. 中国图象图形学报, 2005(3): 332-337. https://doi.org/10.3969/j.issn.1006-8961.2005.03.013 |
[27] | 王科俊, 熊新炎, 任桢. 高效均值滤波算法[J]. 计算机应用研究, 2010, 27(2): 434-438. https://doi.org/10.3969/j.issn.1001-3695.2010.02.008 |
[28] | 赵高长, 张磊, 武风波. 改进的中值滤波算法在图像去噪中的应用[J]. 应用光学, 2011, 32(4): 678-682. https://doi.org/10.3969/j.issn.1002-2082.2011.04.017 |
[29] | 谢杰成, 张大力, 徐文立. 小波图象去噪综述[J]. 中国图象图形学报, 2002(3): 3-11. https://doi.org/10.3969/j.issn.1006-8961.2002.03.001 |
[30] | Bhujle, H.V. and Vadavadagi, B.H. (2019) NLM Based Magnetic Resonance Image Denoising—A Review. Biomedical Signal Processing and Control, 47, 252-261. https://doi.org/10.1016/j.bspc.2018.08.031 |
[31] | Archana, T. and Phool, S. (2023) A Comparative Analysis of Phase Retrieval Algorithms in Asymmetric Double Image Cryptosystem in Gyrator Domain. Optical and Quantum Electronics, 56, Article No. 33. https://doi.org/10.1007/s11082-023-05524-y |
[32] | Tao, S.W., Tian, Z.H., Bai, L., et al. (2023) Phase Retrieval for X-Ray Differential Phase Contrast Radiography with Knowledge Transfer Learning from Virtual Differential Absorption Model. Computers in Biology and Medicine, 168, Article ID: 107711. |
[33] | Li, Y.F., Wu, G.D., et al. (2023) Phase Retrieval from Intensity Difference of Linear Canonical Transform. Banach Journal of Mathematical Analysis, 18, Article No. 3. https://doi.org/10.1007/s43037-023-00307-9 |
[34] | Ye, Q.L., Wang, L.-W. and Lun, D.P.K. (2023) Towards Practical Single-Shot Phase Retrieval with Physics-Driven Deep Neural Network. Optics Express, 31, 35982-35999. https://doi.org/10.1364/OE.496418 |
[35] | Dabov, K., Foi, A., Katkovnik, V., et al. (2007) Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing, 16, 2080-2095. https://doi.org/10.1109/TIP.2007.901238 |