全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于各向异性全变分的GBR参数估计
Estimation of GBR Parameters Based on Anisotropic Total Variation

DOI: 10.12677/aam.2024.135216, PP. 2287-2295

Keywords: 未标定光度立体,GBR参数,各向异性全变分,拟牛顿方法
Uncalibrated Photometric Stereo
, GBR Parameters, Anisotropic Total Variation, Quasi-Newton Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

GBR参数估计是求解未标定光度立体技术的一般方法。本文针对GBR参数估计中模糊深度不连续的问题,引入具有保持深度不连续的各向异性扩散全变分做正则建立新的变分模型,并运用具有超线性收敛的拟牛顿法对模型进行求解。实验表明各向异性扩散全变分方法能有效降低法线误差,提高深度图不连续,且拟牛顿法求解该模型所用时间远低于EM方法和DM方法。
GBR parameter estimation is a general method for solving uncalibrated photometric stereoscopic technique. In order to solve the problem of fuzzy depth discontinuity in GBR parameter estimation, a new variational model is established by introducing the anisotropic diffusion total variational model with depth discontinuity, and the quasi-Newton method with superlinear convergence is used to solve the model. Experiments show that the anisotropic diffusion total variational method can effectively reduce the normal error and improve the discontinuity of depth map, and the time of quasi-Newton method to solve the model is much lower than that of EM method and DM method.

References

[1]  Yang, S., Hou, M., Shaker, A. and Li, S. (2021) Modeling and Processing of Smart Point Clouds of Cultural Relics with Complex Geometries. ISPRS International Journal of Geo-Information, 10, Article 617.
https://doi.org/10.3390/ijgi10090617
[2]  Hayakawa, H. (1994) Photometric Stereo under a Light Source with Arbitrary Motion. Journal of the Optical Society of America A, 11, 3079-3089.
https://doi.org/10.1364/JOSAA.11.003079
[3]  Belhumeur, P.N., Kriegman, D.J., and Yuille, A.L. (1999) The Bas-Relief Ambiguity. International Journal of Computer Vision, 35, 33-44.
https://doi.org/10.1023/A:1008154927611
[4]  Papadhimitri, T., and Favaro, P. (2013) A New Perspective on Uncalibrated Photometric Stereo. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, 23-28 June 2013, 1474-1481.
https://doi.org/10.1109/CVPR.2013.194
[5]  Alldrin, N.G., Mallick, S.P., and Kriegman, D.J. (2007) Resolving the Generalized Bas-Relief Ambiguity by Entropy Minimization. 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1-7.
https://doi.org/10.1109/CVPR.2007.383208
[6]  Favaro, P., and Papadhimitri, T. (2012) A Closed-Form Solution to Uncalibrated Photometric Stereo via Diffuse Maxima. 2012 IEEE Conference on Computer Vision and Pattern Recognition, 821-828.
https://doi.org/10.1109/CVPR.2012.6247754
[7]  Quéau, Y., Lauze, F., and Durou, J.D. (2013) Solving the Uncalibrated Photometric Stereo Problem Using Total Variation. Journal of Mathematical Imaging and Vision, 52, 87-107.
https://doi.org/10.1007/s10851-014-0512-5
[8]  Guo, J., and Chen, Q. (2021) Image Denoising Based on Nonconvex Anisotropic Total-Variation Regularization. Signal Processing, 186, Article ID: 108124.
https://doi.org/10.1016/j.sigpro.2021.108124
[9]  Yuille, A., and Snow, D. (1997) Shape and Albedo from Multiple Images Using Integrability. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 158-164.
https://doi.org/10.1109/CVPR.1997.609314
[10]  Gerth, D. (2021) A New Interpretation of (Tikhonov) Regularization. Inverse Problems, 37, Article ID: 064002.
https://doi.org/10.1088/1361-6420/abfb4d

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133