|
基于误差修正和CEEMDAN-IGWO-ELM的股票价格预测建模
|
Abstract:
针对股票价格非平稳、非线性等特性引发预测精度低的问题,引入Halton Sequence搜索算法、莱维飞行与等级制度策略对灰狼优化算法(GWO)进行改进,提出一种基于误差修正和CEEMDAN-IGWO-ELM股票价格预测模型。首先将股票交易数据进行归一化处理,作为极限学习机(ELM)的输入对股票价格进行预测得到初始预测结果,进而得到误差序列。然后利用PE自适应地确定自适应噪声完备集合经验模态分解(CEEMDAN)的参数,对误差序列进行分解,利用IGWO算法优化ELM模型可调参数对每个子序列建模预测,叠加各子序列预测结果对初始预测序列进行误差修正,得到最终股票预测值。仿真实验与Diebold-Mariano检验结果表明,与其他预测模型相比,所建立模型具有更高的预测精度和优越性。
Aiming at the problem of low prediction accuracy caused by non-static and non-linear characteristics of stock price, the grey wolf optimization algorithm (GWO) is improved by introducing Halton Sequence search algorithm, Levy flight and hierarchy strategy. A stock price prediction model based on error correction and CEEMDAN-IGWO-ELM was proposed. Firstly, the stock transaction data was normalized as input for extreme learning machine (ELM) to predict the stock price to obtain the initial prediction result and obtain an error sequence. Then, PE is used to adaptively determine the parameters of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and decompose the error sequence. The IGWO algorithm is used to optimize the adjustable parameters of ELM model and predict each subsequence. After stacking the prediction results of each, the Error subsequences obtain the final stock prediction result. The experimental results and Diebold-Mariano test show that compared with other prediction models, this model has better prediction accuracy and superiority.
[1] | 王晨. 基于隐马尔科夫模型的股票价格指数预测[D]: [硕士学位论文]. 济南: 山东大学, 2018. |
[2] | 王莹. 基于ARMA模型的股票价格的分析及预测[J]. 生产力研究, 2021(9): 124-127. |
[3] | 吴玉霞, 温欣. 基于ARIMA模型的短期股票价格预测[J]. 统计与决策, 2016(23): 83-86. |
[4] | 邹婕, 李路. 基于随机森林的SA-BiGRU模型的股票价格预测研究[J]. 中国物价, 2023(11): 52-56. |
[5] | 钟琳, 颜七笙. 基于误差修正和VMD-ICPA-LSSVM的短期风速预测建模[J]. 南京信息工程大学学报, 2024, 16(2): 247-260. https://doi.org/10.13878/j.cnki.jnuist.20230421002 |
[6] | Ishwarappa, A.J. (2021) Big Data Based Stock Trend Prediction Using Deep CNN with Reinforcement LSTM model. International Journal of Systems Assurance Engineering and Management. https://doi.org/10.1007/s13198-021-01074-2 |
[7] | 李若晨, 肖人彬. 基于改进狼群算法优化LSTM网络的舆情演化预测[J/OL]. 复杂系统与复杂性科学: 1-13. https://kns.cnki.net/kcms/detail/37.1402.n.20221009.1057.002.html, 2023-12-29. |
[8] | Sun, Y., Sun, Q.S. and Zhu, S. (2022) Prediction of Shanghai Stock Index Based on Investor Sentiment and CNN-LSTM Model. Journal of Systems Science and Information, 10, 620-632. https://doi.org/10.21078/JSSI-2022-620-13 |
[9] | 蔡浩, 李林峰, 李涵, 等. 基于极限学习机的短期交通流预测混合优化模型[J]. 交通运输系统工程与信息, 2023, 23(5): 75-82, 183. |
[10] | 周彦, 王山亮, 杨威, 等. 基于PSO-ELM的卫星导航欺骗式干扰检测[J]. 导航定位与授时, 2022, 9(5): 153-161. |
[11] | 顾爽, 陈真诚, 张振强, 等. 基于极限学习机的胰岛素评价模型[J]. 科学技术与工程, 2021, 21(10): 3935-3939. |
[12] | 张文煜, 马可可, 郭振海, 等. 基于灰狼算法和极限学习机的风速多步预测[J]. 郑州大学学报(工学版), 2024, 45(2): 89-96. https://doi.org/10.13705/j.issn.1671-6833.2023.05.008 |
[13] | 武博. 基于LSTM模型的股票价格预测[D]: [硕士学位论文]. 大连: 大连理工大学, 2022. |
[14] | 韩莹, 张栋, 孙凯强, 等. 结合长短时记忆网络和宽度学习的股票预测新模型研究[J]. 运筹与管理, 2023, 32(8): 187-192. |
[15] | 朱菊香, 任明煜, 谷卫, 等. 基于CEEMDAN-IGWO-CNN-LSTM空气质量预测建模[J/OL]. 计算机仿真: 1-11. https://link.cnki.net/urlid/11.3724.tp.20230922.1501.004, 2023-12-29. |
[16] | 孙存浩, 胡兵, 邹雨轩. 指数趋势预测的BP-LSTM模型[J]. 四川大学学报(自然科学版), 2020, 57(1): 27-31. |
[17] | Wang, Q. and Zhang, Y.W. (2022) Research on PM2.5 Pollution Prediction Method in Hefei City Based on CNN-LSTM Hybrid Model. Journal of Physics: Conference Series, 2400, Article ID: 012006. https://doi.org/10.1088/1742-6596/2400/1/012006 |
[18] | 尤睿凡. 基于时间序列模型与机器学习的组合模型的股票价格指数预测研究[D]: [硕士学位论文]. 济南: 山东大学, 2021. |
[19] | Mirjalili, S., Mirjalilis, M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 |
[20] | 陈颖, 张灿, 肖春艳, 等. 基于GWO-SVR的土壤镉元素含量含水率校正预测模型研究[J].光学学报, 2020, 40(10): 174-181. |
[21] | Zhang, Y., He, D. and Wu, Q. (2023) Forecasting of PM2.5 Concentration Time Series Based on SSA-LSTM Model. International Conference on Statistics, Data Science, and Computational Intelligence (CSDSCI 2022), Qingdao, 19-21 August 2022, 373-380. https://doi.org/10.1117/12.2656939 |
[22] | 罗聪, 范力栋, 赵学文, 等. 基于VMD-IGWO-LSSVM的覆冰预测模型研究[J]. 电网与清洁能源, 2021, 37(6): 9-17. |
[23] | Daniel, O., Sunday, S.I. and Eric, B. (2022) A Compositional Function Hybridization of PSO and GWO for Solving Well Placement Optimisation Problem. Petroleum Research, 7, 401-408. https://doi.org/10.1016/j.ptlrs.2021.12.004 |
[24] | Kumar, B.S., Kumar, A.B., Jobanputra, J.H. and Kolhe, M.L. (2022) Solar-DG and DSTATCOM Concurrent Planning in Reconfigured Distribution System Using APSO and GWO-PSO Based on Novel Objective Function. Energies, 16, Article 263. https://doi.org/10.3390/en16010263 |
[25] | Khodsuz, M. and Mashayekhi, V. (2023) Grounding System Impedance Influence on the Surge Arrester Frequency-Dependent Model Parameters Using PSO-GWO Algorithm. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 42, 1456-1476. https://doi.org/10.1108/COMPEL-07-2022-0229 |
[26] | Huang, N.E., Shen, Z., Long, S.R., et al. (1998) The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 903-995. https://doi.org/10.1098/rspa.1998.0193 |
[27] | Wu, Z. and Huang, N.E. (2009) Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Advances in Adaptive Data Analysis, 1, 1-41. https://doi.org/10.1142/S1793536909000047 |
[28] | Yeh, J.R., Shieh, J.S. and Huang, N.E. (2010) Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method. Advances in Adaptive Data Analysis, 2, 135-156. https://doi.org/10.1142/S1793536910000422 |
[29] | Torres, M.E., Colominas, M.A., Schlotthauer, G. and Flandrin, P. (2011) A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, 22-27 May 2011, 4144-4147. https://doi.org/10.1109/ICASSP.2011.5947265 |
[30] | 李阳, 李维刚, 赵云涛, 等. 基于莱维飞行和随机游动策略的灰狼算法[J]. 计算机科学, 2020, 47(8): 291-296. |
[31] | Bhatt, B., Sharma, H., Arora, K., Joshi, G.P. and Shrestha, B. (2023) Levy Flight-Based Improved Grey Wolf Optimization: A Solution for Various Engineering Problems. Mathematics, 11, Article 1745. https://doi.org/10.3390/math11071745 |
[32] | 钟琳, 颜七笙. 基于PSO-ELM的中国石油股票价格预测建模[J]. 江西科学, 2022, 40(1): 11-16. |