全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MXene/导电金属有机骨架(c-MOF)复合材料的制备及其超级电容器性能研究
Preparation of MXene/Conductive Metal-Organic Framework (c-MOF) Composites and Study on Supercapacitor Performance

DOI: 10.12677/japc.2024.132025, PP. 210-219

Keywords: MXene,金属有机骨架化合物,复合材料,超级电容器
MXene
, Metal-Organic Frameworks, Composite, Supercapacitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

为制备电化学性能优异的超级电容器电极材料,采用在MXenes (Ti2CTx)表面原位自组装导电金属有机骨架化合物(c-MOFs)的方法制备Ti2CTx/c-MOF复合材料。考察了Ti2CTx含量对复合材料形貌结构及电化学性能的影响。通过调节Ti2CTx分散液的浓度,来控制Ti2CTx基底的量,从而控制c-MOF在Ti2CTx表面上的生长高度,最终探究出Ti2CTx/c-MOF复合材料的最佳形貌结构。研究表明0.25-Ti2CTx/c-MOF复合材料电极,在0.5 A·g?1电流密度下具有171 F·g?1的质量比电容,约为相同条件下Ti2CTx的2.5倍,c-MOF的1.3倍,展现出优良的储能性能。同时,由该复合材料构建的对称超级电容器,在3 A·g?1的大电流密度下循环充/放电5000次后,比电容保持率为62%,具有良好的稳定性。以上研究为制备新型Ti2CTx/MOF复合材料提供了科学指导和理论依据。
In order to prepare supercapacitor electrode materials with excellent electrochemical properties, Ti2CTx/c-MOF composites were prepared by in-situ self-assembly of conductive metal-organic frameworks (c-MOFs) on the surface of MXenes (Ti2CTx). The effects of Ti2CTx content on the morphological structure and electrochemical properties of the Ti2CTx/c-MOF composites were investigated. By adjusting the concentration of the Ti2CTx dispersion, the amount of Ti2CTx substrate can be controlled, so as to control the growth height of c-MOF on Ti2CTx surface, and finally the optimal morphological structure of Ti2CTx/c-MOF composites was explored. The results show that the 0.25-Ti2CTx/c-MOF composite electrode has a mass specific capacitance of 171 F?g?1 at a current density of 0.5 A?g?1, which is about 2.5 times that of Ti2CTx and 1.3 times that of c-MOF under the same conditions, demonstrating excellent energy storage performance. In addition, the symmetric supercapacitor constructed by this composite material has good cyclic stability, and the initial capacitance remains above 62% after 5,000 cycles at a high current density of 3 A·g?1. This study provides scientific guidance and theoretical basis for the preparation of novel Ti2CTx/MOF composites.

References

[1]  Borenstein, A., Hanna, O., Attias, R., et al. (2017) Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. Journal of Materials Chemistry A, 5, 12653-12672.
https://doi.org/10.1039/c7ta00863e
[2]  Guo, B., Tian, J., Yin, X., et al. (2020) A Binder-Free Electrode Based on Ti3C2Tx-rGO Aerogel for Supercapacitors. Colloids and Surfaces A, 595, Article ID: 124683.
https://doi.org/10.1016/j.colsurfa.2020.124683
[3]  Sun, L., Su, X., Chen, Y., et al. (2023) Ferric Ion-Assisted Assembly of MXene/TiO2-Graphene Aerogel for Ionic Liquid-Based Supercapacitors. Chemical Engineering Journal, 476, 146731.
https://doi.org/10.1016/j.cej.2023.146731
[4]  Feng, A., Yu, Y., Wang, Y., et al. (2017) Two-Dimensional MXene Ti3C2 Produced by Exfoliation of Ti3AlC2. Materials & Design, 114, 161-166.
https://doi.org/10.1016/j.matdes.2016.10.053
[5]  Zhang, J., Zhao, Y., Guo, X., et al. (2018) Single Platinum Atoms Immobilized on an MXene as an Efficient Catalyst for the Hydrogen Evolution Reaction. Nature Catalysis, 1, 985-992.
https://doi.org/10.1038/s41929-018-0195-1
[6]  Nam, S., Kim, J., Nguyen, V.H., et al. (2022) Collectively Exhaustive MXene and Graphene Oxide Multilayer for Suppressing Shuttling Effect in Flexible Lithium Sulfur Battery. Advanced Materials Technologies, 7, 2022.
https://doi.org/10.1002/admt.202101025
[7]  Yang, W., Yang, J., Byun, J., et al. (2019) 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors. Advanced Materials, 31, Article ID: 1902725.
https://doi.org/10.1002/adma.201902725
[8]  Jiang, H., Wang, Z., Yang, Q., et al. (2018) A novel MnO2/Ti3C2Tx MXene Nanocomposite as High Performance Electrode Materials for Flexible Supercapacitors. Electrochimica Acta, 290, 695-703.
https://doi.org/10.1016/j.electacta.2018.08.096
[9]  Zhao, M.-Q., Ren, C.E., Ling, Z., et al. (2015) Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Advanced Materials, 27, 339-345.
https://doi.org/10.1002/adma.201404140
[10]  Liu, Y., Wang, D., Zhang, C., et al. (2022) Compressible and Lightweight MXene/Carbon Nanofiber Aerogel with “Layer?Strut” Bracing Microscopic Architecture for Efficient Energy Storage. Advanced Fiber Materials, 4, 820-831.
https://doi.org/10.1007/s42765-022-00140-z
[11]  Zheng, J., Pan, X., Huang, X., et al. (2020) Integrated MXene-Based Aerogel Composite: Componential and Structural Engineering towards Enhanced Performance Stability of Hybrid Supercapacitor. Chemical Engineering Journal, 396, 125197.
https://doi.org/10.1016/j.cej.2020.125197
[12]  Ghidiu, M., Lukatskaya, M.R., Zhao, M.-Q., et al. (2014) Conductive Two-Dimensional Titanium Carbide ‘clay’ with High Volumetric Capacitance. Nature, 516, 78-81.
https://doi.org/10.1038/nature13970
[13]  Nazir, A., Le, H.T.T., Min, C.-W., et al. (2020) Coupling of a Conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 Metal-Organic Framework with Silicon Nanoparticles for Use in High-Capacity Lithium-Ion Batteries. Nanoscale, 12, 1629-1642.
https://doi.org/10.1039/c9nr08038d
[14]  Sheberla, D., Sun, L., Blood-Forsythe, M.A., et al. (2014) High Electrical Conductivity in Ni3 (2,3,6,7,10,11-hexai-minotriphenylene)2, a Semiconducting Metal-Organic Graphene Analogue. Journal of the American Chemical Society, 136, 8859-8862.
https://doi.org/10.1021/ja502765n
[15]  Lukatskaya, M.R., Mashtalir, O., Ren, C.E., et al. (2013) Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science, 341, 1502-1505.
https://doi.org/10.1126/science.1241488
[16]  Nguyen, D.K., Schepisi, I.M. and Amir, F.Z. (2019) Extraordinary Cycling Stability of Ni3(HITP)2 Supercapacitors Fabricated by Electrophoretic Deposition: Cycling at 100,000 Cycles. Chemical Engineering Journal, 378, Article ID: 122150.
https://doi.org/10.1016/j.cej.2019.122150

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133