全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

香蕉皮防治2型DN作用机制的网络药理学研究
Network Pharmacology Study on the Mechanism of Banana Peel in Preventing Type 2 Diabetes Nephropathy

DOI: 10.12677/tcm.2024.135170, PP. 1116-1130

Keywords: 羽扇豆酮,2型DN,香蕉皮,网络药理学,分子对接
Lupenone
, Type 2 DN, Banana Peel, Network Pharmacology, Molecular Docking

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:为了系统全面地阐明羽扇豆酮原料药材香蕉皮防治2型DN的潜在分子机制。方法:通过中国知网、维普网、万方数据知识服务平台、Pubmed等文献数据检索香蕉皮的化学成分,根据文献对活性成分防治DN的报道,同时在TCMSP数据库中以口服生物利用度(OB ≥ 30%)和类药性分析(DL ≥ 0.18)参数,筛选香蕉皮的活性成分。从TCMSP、Swiss Target Prediction、PhamMapper数据库中获取活性成分的蛋白靶点,在OMIM、GeneCards数据库检索2型DN相关靶点,通过UniProt数据库将活性成分和疾病靶点转换为基因名称。取活性成分和疾病的交集靶点,利用STRING数据库建立蛋白互作网络(PPI)。在Cytoscape软件中对PPI网络进行分析,根据网络拓扑参数筛选出关键靶点,进行可视化,并建立“成分–靶点–疾病”网络。同时将关键靶点导入到Metascape数据库进行GO及KEGG富集分析,获取香蕉皮防治2型DN的生物过程及信号通路。最后,从PDB数据库获取靶点蛋白晶体结构,利用AutoDock软件对活性成分及靶点蛋白进行分子对接模拟验证,并将结果可视化。结果:通过OB、DL筛选及文献对化学成分防治2型DN的报道,获得9个活性成分分别为槲皮素、儿茶素、β-胡萝卜素、新叶黄素、羽扇豆酮、阿魏酸、芦丁、没食子酸、柚皮苷;并筛选得到共计960个活性成分靶点和1078个疾病靶点,通过取两者的交集共得到179个香蕉皮防治2型DN的潜在作用靶点,绘制得到蛋白互作网络图。在Cytoscape软件中根据网络拓扑参数进一步筛选出INS、ALB、AKT1、IL6、TNF、VEGFA、TP53、EGFR、CASP3、MAPK8、CXCL8、MAPK1等28个关键靶点。GO功能富集分析得到氧化应激、细胞对氧化应激的反应、DNA结合转录因子活性的正调控、细胞对活性氧的反应、细胞对脂多糖的反应等1178个条目,涉及生物过程1102条,细胞组成34条,分子功能45条。KEGG信号通路富集得到AGE-RAGE信号通路、IL-17信号通路、TNF-信号通路、Toll样受体信号通路、FoxO信号通路、MAPK信号通路、HIF-1信号通路、催乳素信号通路等130条信号通路。分子对接结果显示,除化合物芦丁、柚皮苷与靶蛋白ALB结合活性较差外,网络药理学所预测的其他活性成分与关键靶点INS、ALB、AKT1均具有较好的结合活性。结论:运用网络药理学方法初步揭示了香蕉皮防治2型DN的活性成分除羽扇豆酮外,还有多种活性成分在共同发挥作用,表明香蕉皮多成分、多靶点、多途径防治2型DN的整体调节作用特点,为香蕉皮活性成分与实验研究提供科学依据。
Objective: In order to comprehensively elucidate the potential molecular mechanism of banana peel, the raw material of lupenone, in preventing type 2 diabetes nephropathy (DN) systematically. Method: Chemical components of banana peel were retrieved through literature search from CNKI, VIP, Wanfang Data Knowledge Service Platform, Pubmed, etc. The active ingredients of banana peel were screened based on the literature reports on the prevention of DN by active ingredients and parameters such as oral bioavailability (OB ≥ 30%) and drug-likeness (DL ≥ 0.18) in TCMSP database. Protein targets of active ingredients were obtained from TCMSP, Swiss Target Prediction, and PhamMapper databases, and type 2 DN-related targets were searched in OMIM and GeneCards databases. Active ingredients and disease targets were converted into gene names using the UniProt database. The intersection targets of active ingredients and disease were taken, and a protein-protein interaction (PPI) network was established using STRING database. The PPI network was analyzed in Cytoscape software, and key targets were selected based on network topology parameters, visualized, and a “component-target-disease” network was established. Meanwhile, key targets were imported into the Metascape database for GO and KEGG enrichment analysis to obtain biological processes and signaling pathways of banana peel in preventing type 2 DN. Finally, protein crystal structures of

References

[1]  李小芬, 吴红梅, 王祥培. UPLC法测定香蕉、皇帝蕉皮及其果肉中羽扇豆酮含量[J]. 食品科学, 2017, 38(22): 156-161.
[2]  李小芬, 王远敏, 王祥培, 等. HPLC法测定5个采收期香蕉、野蕉、皇帝蕉果皮中羽扇豆酮[J]. 中成药, 2017, 39(12): 2630-2632.
[3]  Wu, H., Xu, F., Hao, J., et al. (2015) Antihyperglycemic Activity of Banana (Musa nana Lour.) Peel and Its Active Ingredients in Alloxan-Induced Diabetic Mice. 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015), Guangzhou, 27-28 June 2015, 231-238.
https://doi.org/10.2991/ic3me-15.2015.44
[4]  王妙飞, 陈娇婷, 张兆峰, 等. 香蕉皮中总黄酮的提取工艺[J]. 光谱实验室, 2012, 29(4): 2204-2207.
[5]  Shadma, A., Sundaram, S. and Rai, G.K. (2014) Nutraceutical Application and Value Addition of Banana Peel: A Review. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 81-85.
[6]  Bhaskar, J.J., Shobha, M.S., Sambaiah, K., et al. (2011) Beneficial Effects of Banana (Musa sp. var. elakki bale) Flower and Pseudostem on Hyperglycemia and Advanced Glycation End-Products (AGEs) in Streptozotocin-Induced Diabetic Rats. Journal of Physiology and Biochemistry, 67, 415-425.
https://doi.org/10.1007/s13105-011-0091-5
[7]  梁盛年, 段志芳, 方旺标, 等. 香蕉皮化学成分的预试验及抑菌初探[J]. 食品科技, 2007, 32(1): 108-111.
[8]  李仁茂, 陈蓉. 萧志成. 粤西地区四种香蕉皮的成份分析[J]. 湛江师范学院学报, 2001, 22(6): 42-45.
[9]  翁竞玉, 陈俊, 刘坤玲, 等. 天然黄酮类化合物防治糖尿病肾病的研究进展[J]. 药学研究, 2018, 37(10): 593-596.
[10]  钟羚君, 谢治深, 徐晓军. 天然小分子化合物改善糖尿病肾病的研究进展[J]. 药学进展, 2017, 41(10): 742-748.
[11]  Navghare, V. and Dhawale, S. (2016) Suppression of Type-II Diabetes with Dyslipidemia and Nephropathy by Peels of Musa Cavendish Fruit. Indian Journal of Clinical Biochemistry, 31, 380-389.
https://doi.org/10.1007/s12291-016-0548-y
[12]  王妙飞, 程庚金生, 黄浩, 等. 香蕉皮总黄酮对糖尿病及其并发症的影响[J]. 食品工业科技, 2015, 36(2): 362-363.
[13]  Wu, H., Xu, F., Huang, X., et al. (2023) Lupenone Improves Type 2 Diabetic Nephropathy by Regulating NF-κB Pathway-Mediated Inflammation and TGF-β1/Smad/CTGF-Associated Fibrosis. Phytomedicine, 118, Article ID: 154959.
https://doi.org/10.1016/j.phymed.2023.154959
[14]  黄旭龙. 芭蕉根有效成分的替代资源和防治2型DN炎症途径的作用机制研究[D]: [硕士学位论文]. 贵阳: 贵州中医药大学, 2020.
[15]  张玲玲. 基于肾纤维化角度研究羽扇豆酮防治2型DN的作用及分子机制[D]: [硕士学位论文]. 贵阳: 贵州中医药大学, 2020.
[16]  Tao, W., Xu, X., Wang, X., et al. (2013) Network Pharmacology-Based Prediction of the Active Ingredients and Potential Targets of Chinese Herbal Radix Curcumae Formula for Application to Cardiovascular Disease. Journal of Ethnopharmacology, 145, 1-10.
https://doi.org/10.1016/j.jep.2012.09.051
[17]  Hopkins, A.L. (2008) Network Pharmacology: The Next Paradigm in Drug Discovery. Nature Chemical Biology, 4, 682-690.
https://doi.org/10.1038/nchembio.118
[18]  王旭焘, 潘定一, 郭玮, 等. 阿魏酸对糖尿病大鼠肾脏足细胞nephrin、podocin蛋白表达的影响[J]. 中国应生理学杂志, 2017, 33(6): 564-567.
[19]  孟徐兵, 梁伟时, 薛宁, 等. 芦丁延缓糖尿病并发症进程的研究现状[J]. 中国高新科技, 2019(2): 42-44.
[20]  Zhang, J., Yang, S., Li, H., et al. (2017) Naringin Ameliorates Diabetic Nephropathy by Inhibiting NADPH Oxidase 4. European Journal of Pharmacology, 804, 1-6.
https://doi.org/10.1016/j.ejphar.2017.04.006
[21]  Hong, Y., Wang, J., Sun, W., et al. (2023) Gallic Acid Improves the Metformin Effects on Diabetic Kidney Disease in Mice. Renal Failure, 45, Article ID: 2183726.
https://doi.org/10.1080/0886022X.2023.2183726
[22]  宗阳, 丁美林, 贾可可, 马世堂, 等. 基于网络药理学和分子对接法探寻达原饮治疗新型冠状病毒肺炎(COVID-19)活性化合物的研究[J]. 中草药, 2020, 51(4): 836-844.
[23]  Jiang, X., Yu, J., Wang, X., et al. (2019) Quercetin Improves Lipid Metabolism via SCAP-SREBP2-LDLr Signaling Pathway in Early Stage Diabetic Nephropathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 827-839.
https://doi.org/10.2147/DMSO.S195456
[24]  Du, L., et al. (2019) Quercetin Inhibited Mesangial Cell Proliferation of Early Diabetic Nephropathy through the Hippo Pathway. Pharmacological Research, 146, Article ID: 104320.
https://doi.org/10.1016/j.phrs.2019.104320
[25]  Zhou, Q., et al. (2014) ( )-Catechin Ameliorates Diabetic Nephropathy by Trapping Methylglyoxal in Type 2 Diabetic Mice. Molecular Nutrition and Food Research, 58, 2249-2260.
https://doi.org/10.1002/mnfr.201400533
[26]  Samarghandian, S., Azimi-Nezhad, M. and Farkhondeh, T. (2017) Catechin Treatment Ameliorates Diabetes and Its Complications in Streptozotocin-Induced Diabetic Rats. Dose-Response, 15, No. 1.
https://doi.org/10.1177/1559325817691158
[27]  张云霞. 阿魏酸及其衍生物治疗糖尿病肾病的疗效观察[J]. 中国医药指南, 2017, 15(5): 76-77.
[28]  Roy, S., Ahmed, F., Banerjee, S., et al. (2016) Naringenin Ameliorates Streptozotocin-Induced Diabetic Rat Renal Impairment by Downregulation of TGF-β1 and IL-1 via Modulation of Oxidative Stress Correlates with Decreased Apoptotic Events. Pharmaceutical Biology, 54, 1616-1627.
https://doi.org/10.3109/13880209.2015.1110599
[29]  Ahad, A., Ahsan, H., Mujeeb, M., et al. (2015) Gallic Acid Ameliorates Renal Functions by Inhibiting the Activation of p38 MAPK in Experimentally Induced Type 2 Diabetic Rats and Cultured Rat Proximal Tubular Epithelial Cells. Chemico-Biological Interactions, 240, 292-303.
https://doi.org/10.1016/j.cbi.2015.08.026
[30]  余红, 石明隽, 肖瑛, 等. 丹芪合剂下调糖尿病肾病大鼠肾组织Akt1的表达[J]. 中国实验方剂学杂志, 2013, 19(7): 259-262.
[31]  Liu, Y. (2010) New Insights into Epithelial-Mesenchymal Transition in Kidney Fibrosis. Journal of the American Society of Nephrology, 21, 212-222.
https://doi.org/10.1681/ASN.2008121226
[32]  吴琼皎. 2型DN患者血清VEGF、IL-6及TNF-α水平的检测与意义[J]. 中国医药科学, 2014, 4(20): 136-138.
[33]  Carranza, K., Veron, D., Cercado, A., et al. (2015) Cellular and Molecular Aspects of Diabetic Nephropathy; the Role of VEGF-A. Nefrología, 35, 131-138.
https://doi.org/10.1016/j.nefro.2015.05.013
[34]  尹德海, 梁晓春. 从肾小球系膜细胞表型转化谈中医药防治糖尿病肾病机制研究思路[J]. 中国中医药信息杂志, 2008, 15(6): 90-91.
[35]  Taylor, E.S., Pol‐Fachin, L., Lins, R.D., et al. (2017) Conformational Stability of the Epidermal Growth Factor (EGF) Receptor as Influenced by Glycosylation, Dimerization and EGF Hormone Binding. Proteins: Structure, Function, and Bioinformatics, 85, 561-570.
https://doi.org/10.1002/prot.25220
[36]  Ju, W., Nair, V., Smith, S., et al. (2015) Tissue Transcriptome-Driven Identification of Epidermal Growth Factor as a Chronic Kidney Disease Biomarker. Science Translational Medicine, 7, 316ra193.
[37]  Kashihara, N., Haruna, Y.K., Kondeti, V., et al. (2010) Oxidative Stress in Diabetic Nephropathy. Current Medicinal Chemistry, 17, 4256-4269.
https://doi.org/10.2174/092986710793348581
[38]  Brosius, F.C. (2003) Trophic Factors and Cytokines in Early Diabetic Glomerulopathy. Experimental Diabesity Research, 4, 225-233.
https://doi.org/10.1155/EDR.2003.225
[39]  Ramasamy, R., Yan, S.F. and Schmidt, A.M. (2011) Receptor for AGE (RAGE): Signaling Mechanisms in the Pathogenesis of Diabetes and Its Complications. Annals of the New York Academy of Sciences, 1243, 88-102.
https://doi.org/10.1111/j.1749-6632.2011.06320.x
[40]  Yamagishi, S. (2011) Role of Advanced Glycation End Products (AGEs) and Receptor for AGEs (RAGE) in Vascular Damage in Diabetes. Experimental Gerontology, 46, 217-224.
https://doi.org/10.1016/j.exger.2010.11.007
[41]  马楠, 刘艳姝, 刘文思, 等. HIF-1α、VEGF信号通路在糖尿病肾病中的作用研究进展[J]. 广东化工, 2020, 47(23): 63-70.
[42]  危正南, 李涛, 张庆红, 等. MIF、TLR4、TNF-α水平在糖尿病肾病患者中的变化及其临床意义[J]. 疑难病杂志, 2016, 15(2): 165-168.
[43]  Mohamed, R., Jayakumar, C., Chen, F., et al. (2016) Low-Dose IL-17 Therapy Prevents and Reverses Diabetic Nephropathy, Metabolic Syndrome, and Associated Organ Fibrosis. Journal of the American Society of Nephrology, 27, 745-765.
https://doi.org/10.1681/ASN.2014111136
[44]  张洪江, 凃影叶, 杜飞, 等. TGF-β参与糖尿病肾病的发生发展的机制研究现状[J]. 生命科学, 2020, 32(2): 179-187.
[45]  于翔, 戴铭卉, 刘猛, 等. 通腑泄浊法对慢性肾脏病大鼠TGF-β1/p38MAPK信号通路的调节作用[J]. 中成药, 2019, 41(5): 1000-1005.
[46]  Jin, M., Chadban, S.J., Zhao, C.Y., et al. (2014) TLR4 Activation Promotes Podocyte Injury and Interstitial Fibrosis in Diabetic Nephropathy. PLOS ONE, 9, e97985.
https://doi.org/10.1371/journal.pone.0097985
[47]  任凌燕, 朱鸣, 朱华艳, 等. 雷公藤甲素通过调控Toll-样受体(TLR)/核因子κB(NF-κB)信号通路对糖尿病肾病模型小鼠足细胞的作用研究[J]. 浙江中西医结合杂志, 2020, 30(3): 191-195.
[48]  马可可, 鞠营辉, 陈清青, 等. 黄芪甲苷对2型糖尿病肾病大鼠肾组织PI3K/Akt/FoxO1信号调控的影响[J]. 中国实验方剂学杂志, 2019, 25(2): 74-81.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133