|
中医药通过调控NF-κB信号通路治疗特发性肺纤维化的研究进展
|
Abstract:
特发性肺纤维化(idiopathic pulmonary fibrosis, IPF)是一种原因不明确的慢性、进行性、纤维化性和致命性的呼吸系统疾病。由于其发病原因复杂、致死率高,严重影响患者的身心健康。目前IPF的治疗手段十分有限,临床效果不佳,对于生存率和生活质量未能得到明显改善,且易出现不良反应,因此针对IPF尚无理想的治疗方案。NF-κB是细胞内信号转导的主要通路,现代研究发现,NF-κB被视为IPF的主要调节通路,对于开发新的IPF策略具有重要意义。近年来,中药凭借着多成分、多靶点、多通路、不良反应小等优势在抗IPF中得到广泛认可。现已有大量研究表明,中药单体和中药复方可通过干预NF-κB信号通路调控炎症反应、氧化应激、细胞周期、自噬、凋亡以及血管生成等方面,抑制肺泡上皮细胞的转化、凋亡以及成纤维细胞的增殖、血管新生,促进成纤维细胞自噬、凋亡,从而抑制IPF进展,达到抗IPF的治疗效果。故本文从NF-κB信号通路调控IPF的作用机制及中药基于该通路治疗IPF的研究进行综述,以期为今后中药抗IPF的发展及新药研发提供参考。
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic and fatal respiratory disease of unknown cause. Due to its complex pathogenesis and high mortality rate, it seriously affects the physical and mental health of patients. At present, the treatment of IPF is very limited, the clinical effect is not good, the survival rate and quality of life can not be significantly improved, and is prone to adverse reactions, so there is no ideal treatment for IPF. NF-κB is the main pathway of intracellular signal transduction. Modern studies have found that NF-κB is regarded as the main regulatory pathway of IPF, which is of great significance for the development of new strategies for IPF. In recent years, traditional Chinese medicine (TCM) has been widely recognized in the treatment of IPF due to its advantages of multi-component, multi-target, multi-pathway and small adverse reactions. A large number of studies have shown that traditional Chinese medicine monomers and compounds can regulate inflammatory response, oxidative stress, cell cycle, autophagy, apoptosis and angiogenesis by interfering with NF-κB signaling pathway, inhibit the transformation and apoptosis of alveolar epithelial cells, proliferation and angiogenesis of fibroblasts, and promote autophagy and apoptosis of fibroblasts. Thus, it can inhibit the progression of IPF and achieve the therapeutic effect of anti-IPF. Therefore, this article reviews the mechanism of NF-κB signaling pathway in the regulation of IPF and the research of traditional Chinese medicine based on this pathway in the treatment of IPF, in order to provide reference for the development of Chinese medicine against IPF and the research and development of new drugs in the future.
[1] | Raghu, G., Collard, H.R., Egan, J.J., et al. (2011) An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-Based Guidelines for Diagnosis and Management. American Journal of Respiratory and Critical Care Medicine, 183, 788-824. https://doi.org/10.1164/rccm.2009-040GL |
[2] | Sellarés, J., Hernández-González, F., Lucena, C.M., et al. (2016) Auscultation of Velcro Crackles Is Associated with Usual Interstitial Pneumonia. Medicine (Baltimore), 95, e2573. https://doi.org/10.1097/MD.0000000000002573 |
[3] | Van Manen, M.J.G., Vermeer, L.C., Moor, C.C., et al. (2017) Clubbing in Patients with Fibrotic Interstitial Lung Diseases. Respiratory Medicine, 132, 226-231. https://doi.org/10.1016/j.rmed.2017.10.021 |
[4] | 朱元章, 何志高, 张明. 中药防治新型冠状病毒肺炎(COVID-19)恢复期肺纤维化的作用[J]. 中成药, 2021, 43(8): 2224-2229. |
[5] | Hutchinson, J., Fogarty, A., Hubbard, R., et al. (2015) Global Incidence and Mortality of Idiopathic Pulmonary Fibrosis: A Systematic Review. European Respiratory Journal, 46, 795-806. https://doi.org/10.1183/09031936.00185114 |
[6] | Liu, T., Zhang, L., Joo, D. and Sun, S. (2017) NF-Kappa B Signaling in Inflammation. Signal Transduction and Targeted Therapy, 2, Article No. 17023. https://doi.org/10.1038/sigtrans.2017.23 |
[7] | Yu, H., Lin, L., Zhang, Z., Zhang, H. and Hu, H. (2020) Targeting NF-Kappa B Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduction and Targeted Therapy, 5, Article No. 209. https://doi.org/10.1038/s41392-020-00312-6 |
[8] | Zhong, Z., Umemura, A., Sanchez-Lopez, E., Liang, S., Shalapour, S., Wong, J., et al. (2016) NF-Kappa B Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell, 164, 896-910. https://doi.org/10.1016/j.cell.2015.12.057 |
[9] | Sun, X., Icli, B., Wara, A.K., Belkin, N., He, S., Kobzik, L., et al. (2012) MicroRNA-181B Regulates NF-Kappa B-Mediated Vascular Inflammation. Journal of Clinical Investigation, 122, 1973-1990. https://doi.org/10.1172/JCI61495 |
[10] | Ghosh, S., May, M. and Kopp, E. (1998) NF-Kappa B and REL Proteins: Evolutionarily Conserved Mediators of Immune Responses. Annual Review of Immunology, 16, 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225 |
[11] | Hayden, M.S. and Ghosh, S. (2012) Nf-Kappa B, the First Quarter-Century: Remarkable Progress and Outstanding Questions. Genes & Development, 26, 203-234. https://doi.org/10.1101/gad.183434.111 |
[12] | Christian, F., Smith, E.L. and Carmody, R.J. (2016) The Regulation of NF-Kappa B Subunits by Phosphorylation. Cells, 5, Article No. 12. https://doi.org/10.3390/cells5010012 |
[13] | Jiang, W.G. and Ablin, R.J. (2011) Cancer Metastasis, Challenges, Progress and the Opportunities. Frontiers in Bioscience, 3, 391-394. https://doi.org/10.2741/e254 |
[14] | Afonina, I.S., Zhong, Z., Karin, M. and Beyaert, R. (2017) Limiting Inflammation—The Negative Regulation of NF-Kappa B and the NLRP3 Inflammasome. Nature Immunology, 18, 861-869. https://doi.org/10.1038/ni.3772 |
[15] | Mitchell, J.P. and Carmody, R.J. (2018) NF-Kappa B and the Transcriptional Control of Inflammation. International Review of Cell and Molecular Biology, 335, 41-84. https://doi.org/10.1016/bs.ircmb.2017.07.007 |
[16] | Li, C., Xia, W., Huo, L., Lim, S., Wu, Y., Hsu, J.L., et al. (2012) Epithelial-Mesenchymal Transition Induced by TNF-Alpha Requires NF-Kappa B-Mediated Transcriptional Upregulation of Twist1. Cancer Research, 72, 1290-1300. https://doi.org/10.1158/0008-5472.CAN-11-3123 |
[17] | Sigal, L.H. (2006) Basic Science for the Clinician 39-NF-Kappa B—Function, Activation, Control, and Consequences. Journal of Clinical Rheumatology, 12, 207-211. https://doi.org/10.1097/01.rhu.0000231385.94784.e4 |
[18] | Gross, C.M., Kellner, M., Wang, T., Lu, Q., Sun, X., Zemskov, E.A., et al. (2018) LPS-Induced Acute Lung Injury Involves NF-Kappa B-Mediated Downregulation of SOX18. American Journal of Respiratory Cell and Molecular Biology, 58, 614-624. https://doi.org/10.1165/rcmb.2016-0390OC |
[19] | Ju, M., Liu, B., He, H., Gu, Z., Liu, Y., Su, Y., et al. (2018) MicroRNA-27A Alleviates Lps-Induced Acute Lung Injury in Mice via Inhibiting Inflammation and Apoptosis through Modulating TLR4/MyD88/NF-Kappa B Pathway. Cell Cycle, 17, 2001-2018. https://doi.org/10.1080/15384101.2018.1509635 |
[20] | Liu, H., Dong, F., Li, G., Niu, M., Zhang, C., Han, Y., et al. (2018) Liuweiwuling Tablets Attenuate BDL-Induced Hepatic Fibrosis via Modulation of TGF-Beta/Smad and NF-Kappa B Signaling Pathways. Journal of Ethnopharmacology, 210, 232-241. https://doi.org/10.1016/j.jep.2017.08.029 |
[21] | Blokland, K.E.C., Waters, D.W., Schuliga, M., Read, J., Pouwels, S.D., Grainge, C.L., et al. (2020) Senescence of IPF Lung Fibroblasts Disrupt Alveolar Epithelial Cell Proliferation and Promote Migration in Wound Healing. Pharmaceutics, 12, Article No. 389. https://doi.org/10.3390/pharmaceutics12040389 |
[22] | Lee, J., La, J., Aziz, S., Brownell, R., Jones, K., Green, G., et al. (2018) Molecular Markers of Telomere Dysfunction and Senescence Are Common Findings in the Usual Interstitial Pneumonia Pattern of Lung Fibrosis. European Respiratory Journal, 52, 67-76. https://doi.org/10.1183/13993003.congress-2018.OA5362 |
[23] | Lopes-Paciencia, S., Saint-Germain, E., Rowell, M., Ruiz, A.F., Kalegari, P. and Ferbeyre, G. (2019) The Senescence-Associated Secretory Phenotype and Its Regulation. Cytokine, 117, 15-22. https://doi.org/10.1016/j.cyto.2019.01.013 |
[24] | Fafian-Labora, J.A. and O’Loghlen, A. (2020) Classical and Nonclassical Intercellular Communication in Senescence and Ageing. Trends in Cell Biology, 30, 628-639. https://doi.org/10.1016/j.tcb.2020.05.003 |
[25] | 庞立健, 王琳琳, 吕晓东. 肺纤维化(肺痿)中医病机初探[J]. 中华中医药学刊, 2011, 29(7): 1596-1597. |
[26] | 庞立健, 王琳琳, 吕晓东. 论肺纤维化(肺痿)与肺脾肾三脏的关系[J]. 辽宁中医杂志, 2008(2): 211-212. |
[27] | 黄云鉴, 龚婕宁. 论肺痹肺痿与肺纤维化的证治规律[J]. 时珍国医国药, 2016, 27(6): 1439-1441. |
[28] | 张仲景. 金匮要略[M]. 北京: 人民卫生出版社, 2005. |
[29] | 姜德友, 姜培培. 肺痿源流考[J]. 浙江中医药大学学报, 2015, 39(1): 15-18 21. |
[30] | 马锦地, 李建生, 余学庆, 等. 基于现代名老中医经验的肺痿病因病机及证素规律研究[J]. 中国中医基础医学杂志, 2016, 22(11): 1493-1496. |
[31] | 侯学文. 基于数据挖掘与网络药理学探讨中医药对特发性肺纤维化的作用机制[D]: [硕士学位论文]. 郑州: 河南中医药大学, 2022. |
[32] | 刘晶晶. 人参皂苷Rb1缓解博来霉素诱导的小鼠肺纤维化及其机制研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2023. |
[33] | 张小利. 甘草酸单糖通过PI3K/AKT/NF-κB信号通路改善单壁碳纳米管诱导的小鼠肺部纤维化[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2023. |
[34] | Zhou, Z., Kandhare, A.D., Kandhare, A.A., et al. (2019) Hesperidin Ameliorates Bleomycin-Induced Experimental Pulmonary Fibrosis via Inhibition of TGF-Beta1/Smad3/AMPK and IkappaBalpha/NF-KappaB Pathways. EXCLI Journal, 18, Article No. 723. |
[35] | 彭玲. 灯盏花乙素经NF-κB/NLRP3通路改善BLM诱导的小鼠肺纤维化的机制研究[D]: [博士学位论文]. 长沙: 中南大学, 2022. |
[36] | 门翔, 党强, 周小果, 等. 槲皮素对基于TGF-β1/P38 MAPK/NF-κB信号通路抗博来霉素致小鼠肺纤维化的作用及机制研究[J]. 中药药理与临床, 2023, 39(2): 43-47. |
[37] | Yang, F., Cao, Y., Zhang, J., et al. (2017) Glaucocalyxin A Improves Survival in Bleomycin-Induced Pulmonary Fibrosis in Mice. Biochemical and Biophysical Research Communications, 482, 147-153. https://doi.org/10.1016/j.bbrc.2016.11.003 |
[38] | Tian, S.L., Yang, Y., Liu, X.L., et al. (2018) Emodin Attenuates Bleomycin-Induced Pulmonary Fibrosis via Anti-Inflammatory and Anti-Oxidative Activities in Rats. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, ANS1-10. https://doi.org/10.12659/MSM.905496 |
[39] | 陈宏, 陈群, 李全. 雷公藤甲素调控NF-κB/Twist1信号通路抑制肺泡上皮细胞间质转分化的机制[J]. 中华中医药杂志, 2022, 37(3): 1384-1388. |
[40] | Tian, H., Wang, L. and Fu, T. (2023) Ephedrine Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting Epithelial-Mesenchymal Transition and Restraining NF-κB Signaling. The Journal of Toxicological Sciences, 48, 547-556. https://doi.org/10.2131/jts.48.547 |
[41] | Yao, F., Xu, M., Dong, L., et al. (2023) Sinomenine Attenuates Pulmonary Fibrosis by Downregulating TGF-β1/Smad3, PI3K/Akt and NF-κB Signaling Pathways. BMC Pulmonary Medicine, 24, Article No. 229. https://doi.org/10.2139/ssrn.4597976 |
[42] | Wang, L., Shao, M., Jiang, W., et al. (2022) Resveratrol Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting Epithelial-Mesenchymal Transition and Down-Regulating TLR4/NF-κB and TGF-β1/Smad3 Signalling Pathways in Rats. Tissue and Cell, 79, Article ID: 101953. https://doi.org/10.1016/j.tice.2022.101953 |
[43] | 魏祎, 刘超, 齐鸣, 等. 岩白菜素通过调控NF-κB/NLRP3通路和代谢对特发性肺间质纤维化小鼠的影响[J]. 中成药, 2023, 45(1): 62-69. |
[44] | Wei, Y., Qi, M., Liu, C., et al. (2023) Astragalus Polysaccharide Attenuates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TLR4/NF-κB Signaling Pathway and Regulating Gut Microbiota. European Journal of Pharmacology, 944, Article ID: 175594. https://doi.org/10.1016/j.ejphar.2023.175594 |
[45] | Zhang, R., Xu, L., An, X., et al. (2020) Astragalus Polysaccharides Attenuate Pulmonary Fibrosis by Inhibiting the Epithelial-Mesenchymal Transition and NF-κB Pathway Activation. International Journal of Molecular Medicine, 46, 331-339. https://doi.org/10.3892/ijmm.2020.4574 |
[46] | 刘欢, 邓海艳, 田小雪, 等. 黄芪多糖通过抑制钙蛋白酶1/NF-κκB信号通路减轻低氧诱导的肺动脉高压小鼠肺炎症反应和纤维化[J]. 中国药理学与毒理学杂志, 2022, 36(2): 98-107. |
[47] | 文秀华, 杨红军. 补肺汤对HMGB1诱导的特发性肺纤维化相关细胞TLR2/NF-κB信号通路的影响[J]. 中国中西医结合杂志, 2021, 41(10): 1228-1234. |
[48] | Yang, S., Cui, W., Wang, M., et al. (2020) Bufei Decoction Alleviated Bleomycin-Induced Idiopathic Pulmonary Fibrosis in Mice by Anti-Inflammation. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 7483278. https://doi.org/10.1155/2020/7483278 |
[49] | 刘娜, 王杰鹏, 鲁辰希, 等. 当归补血汤对博莱霉素致肺纤维化大鼠PKD1/NF-κB/MnSOD信号通路的影响[J]. 中国实验方剂学杂志, 2020, 26(13): 66-72. |
[50] | Feng, Y., Dai, L., Zhang, Y., et al. (2023) Buyang Huanwu Decoction Alleviates Blood Stasis, Platelet Activation, and Inflammation and Regulates the HMGB1/NF-κB Pathway in Rats with Pulmonary Fibrosis. Journal of Ethnopharmacology, 319, Article ID: 117088. https://doi.org/10.1016/j.jep.2023.117088 |
[51] | Song, S., Wang, J., Liu, G., et al. (2022) Protective Effects of the Wenfei Buqi Tongluo Formula on the Inflammation in Idiopathic Pulmonary Fibrosis through Inhibiting the TLR4/MyD88/NF-κB Pathway. BioMed Research International, 2022, Article ID: 8752325. https://doi.org/10.1155/2022/8752325 |