全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

遗传预测血液代谢物与中耳、鼻腔及鼻窦良性肿瘤的因果关系——两样本双向孟德尔随机化研究
Genetic Prediction of Causality between Blood Metabolites and Benign Tumors of the Middle Ear, Nasal Cavity, and Paranasal Sinuses—Two-Sample Bidirectional Mendelian Randomization Study

DOI: 10.12677/acm.2024.1451725, PP. 2602-2612

Keywords: 血液代谢物,孟德尔随机化,良性肿瘤,因果关系
Blood Metabolites
, Mendelian Randomization, Benign Tumors, Causality

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:利用孟德尔随机化分析(Mendelian randomization, MR)方法,探究1400种血液代谢物和中耳、鼻腔及鼻窦良性肿瘤的因果关系。方法:本研究采用两样本双向孟德尔随机化分析,利用全基因组关联研究(Genome-wide Association study, GWAS)数据库获得血液代谢物和中耳、鼻腔及鼻窦良性肿瘤相关数据。使用R软件和TwoSampleMR软件包进行分析。研究采用逆方差加权法(IVW)为主,结合MR-Egger回归、加权中位数法(WM)、简单模型法(Simple mode)及加权模型法(Weighted mode)作为补充分析血液代谢物和中耳、鼻腔及鼻窦良性肿瘤的因果关系。为进一步增强结果的可靠性和稳定性通过Cochran Q检验、MR-Egger回归检验、MR-PRESSO综合检验以及MR Egger截距检测异质性及水平多效性。由于样本过大,为了结果更加严谨对结果进行错误发现率(FDR)矫正。反向MR分析以中耳、鼻腔及鼻窦良性肿瘤为暴露因素,将正向筛选得到的血液代谢物作为结局变量进行效应分析和敏感性分析。结果:分析结果显示,发现1种血液代谢物为棕榈油酸(16:1n-7)升高与中耳、鼻腔及鼻窦良性肿瘤风险增高显著相关(IVW:OR = 1.971, 95% CI: 1.392~2.789, P < 0.001),而反向MR提示中耳、鼻腔及鼻窦良性肿瘤与棕榈油酸(16:1n-7)无显著相关性(IVW:OR = 1.027, 95% CI: 0.980~1.076, P = 0.269)。通过Cochran Q检验、MR-Egger回归检验、MR-PRESSO综合检验以及MR Egger截距检测结果显示工具变量之间不存在异质性及水平多效性,同时,通过留一法检验分析证实,单个SNPs对整体结果没有显著影响,进一步增强了结果的可靠性和稳定性。结论:在1400种血液代谢物种发现1种棕榈油酸(16:1n-7)与中耳、鼻腔及鼻窦良性肿瘤发病存在正向因果关联,可为中耳、鼻腔及鼻窦良性肿瘤发病机制及早期筛检和治疗提供参考。
Objective: To explore the causal relationship between 1400 blood metabolites and benign tumors of middle ear, nasal cavity and paranasal sinus by using Mendelian randomization (MR) method. Methods: Two-sample bi-directional Mendelian randomization analysis was used in this study, and the data related to blood metabolites and benign tumors of middle ear, nasal cavity and paranasal sinus were obtained from Genome-wide Association study (GWAS) database. R software and Two Sample MR software package were used for analysis. The inverse variance weighting (IVW) method was used as the main method, and MR-Egger regression, weighted median (WM), simple mode and weighted mode were used as supplementary methods to analyze the causal relationship between blood metabolites and benign tumors of middle ear, nasal cavity and paranasal sinus. To further enhance the reliability and stability of the results, Cochran Q test, MR-Egger regression test, MR-PRESSO comprehensive test and MR Egger intercept were used to detect heterogeneity and horizontal pleiotropy. Due to the large sample size, the results were corrected by false detection rate (FDR) for more rigorous results. The reverse MR analysis took benign tumors of middle ear, nasal cavity and paranasal sinus as the exposure factor, and the blood metabolites obtained by positive screening were used as outcome variables for effect analysis and sensitivity analysis. Results: The results showed that the increase of palmitic acid (16:1n-7) was significantly associated with the risk of benign tumors of middle ear, nasal cavity and paranasal sinus (IVW:OR = 1.971, 95% CI: 1.392~2.789, P < 0.001), while reverse MR showed no significant

References

[1]  Tatekawa, H., Shimono, T., Ohsawa, M., et al. (2018) Imaging Features of Benign Mass Lesions in the Nasal Cavity and Paranasal Sinuses According to the 2017 WHO Classification. Japanese Journal of Radiology, 36, 361-381.
https://doi.org/10.1007/s11604-018-0739-y
[2]  罗万洁, 张天虹. 骨吸收机制在中耳胆脂瘤中的研究进展[J]. 中华耳科学杂志, 2023, 21(5): 711-715.
[3]  Luong, T.T. and Yan, C.H. (2023) Benign Paranasal Sinus Tumors. Current Otorhinolaryngology Reports, 11, 332-343.
https://doi.org/10.1007/s40136-023-00466-1
[4]  Gibson, T.N., McNaughton, D.P. and Hanchard, B. (2017) Sinonasal Malignancies: Incidence and Histological Distribution in Jamaica, 1973-2007. Cancer Causes & Control, 28, 1219-1225.
https://doi.org/10.1007/s10552-017-0916-9
[5]  Barnes, L. (2019) Diseases of the Nasal Cavity, Paranasal Sinuses, and Nasopharynx. In: Surgical Pathology of the Head and Neck, CRC Press, Boca Raton, 353-432.
[6]  Wang, Z., Chen, S., Zhu, Q., et al. (2021) Using a Two-Sample Mendelian Randomization Method in Assessing the Causal Relationships between Human Blood Metabolites and Heart Failure. Frontiers in Cardiovascular Medicine, 8, Article ID: 695480.
https://doi.org/10.3389/fcvm.2021.695480
[7]  Johnson, C.H., Ivanisevic, J. and Siuzdak, G. (2016) Metabolomics: Beyond Biomarkers and Towards Mechanisms. Nature Reviews Molecular Cell Biology, 17, 451-459.
https://doi.org/10.1038/nrm.2016.25
[8]  Wang, Z. and Yang, Q. (2024) The Causal Relationship between Human Blood Metabolites and the Risk of Visceral Obesity: A Mendelian Randomization Analysis. Lipids in Health and Disease, 23, Article No. 39.
https://doi.org/10.1186/s12944-024-02035-x
[9]  Yang, J., Yan, B., Zhao, B., et al. (2020) Assessing the Causal Effects of Human Serum Metabolites on 5 Major Psychiatric Disorders. Schizophrenia Bulletin, 46, 804-813.
https://doi.org/10.1093/schbul/sbz138
[10]  Shin, S.Y., Fauman, E.B., Petersen, A.K., et al. (2014) An Atlas of Genetic Influences on Human Blood Metabolites. Nature Genetics, 46, 543-550.
https://doi.org/10.1038/ng.2982
[11]  Chen, Y., Lu, T., Pettersson-Kymmer, U., et al. (2023) Genomic Atlas of the Plasma Metabolome Prioritizes Metabolites Implicated in Human Diseases. Nature Genetics, 55, 44-53.
https://doi.org/10.1038/s41588-022-01270-1
[12]  Fu, R. and Kim, S.J. (2021) Inferring Causality from Observational Studies: The Role of Instrumental Variable Analysis. Kidney International, 99, 1303-1308.
https://doi.org/10.1016/j.kint.2021.03.018
[13]  Sanderson, E., Glymour, M.M., Holmes, M.V., et al. (2022) Mendelian Randomization. Nature Reviews Methods Primers, 2, Article No. 6.
https://doi.org/10.1038/s43586-021-00092-5
[14]  Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665.
https://doi.org/10.1002/gepi.21758
[15]  Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.
https://doi.org/10.1093/ije/dyv080
[16]  Bowden, J., Davey Smith, G., Haycock, P.C., et al. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314.
https://doi.org/10.1002/gepi.21965
[17]  Hartwig, F.P., Davey Smith, G. and Bowden, J. (2017) Robust Inference in Summary Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption. International Journal of Epidemiology, 46, 1985-1998.
https://doi.org/10.1093/ije/dyx102
[18]  Yin, Y., Shan, C., Han, Q., et al. (2023) Causal Effects of Human Serum Metabolites on Occurrence and Progress Indicators of Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study. Frontiers in Nutrition, 10, Article ID: 1274078.
https://doi.org/10.3389/fnut.2023.1274078
[19]  王子贤, 赖伟华, 钟诗龙. 两样本孟德尔随机化方法分析血液代谢物与冠心病的因果关系[J]. 南方医科大学学报, 2021, 41(2): 272-278.
[20]  Luo, P., Yuan, Q., Wan, X., et al. (2023) A Two-Sample Mendelian Randomization Study of Circulating Lipids and Deep Venous Thrombosis. Scientific Reports, 13, Article No. 7432.
https://doi.org/10.1038/s41598-023-34726-3
[21]  魏熙翔, 杨晖, 尹雪, 等. 基于双样本孟德尔随机化的特应性皮炎与圆锥角膜因果关系研究[J]. 中华眼视光学与视觉科学杂志, 2023, 25(11): 860-865.
https://doi.org/10.3760/cma.j.cn115909-20230601-00181
[22]  Xu, W., Zhang, F., Shi, Y., et al. (2022) Causal Association of Epigenetic Aging and COVID-19 Severity and Susceptibility: A Bidirectional Mendelian Randomization Study. Frontiers in Medicine, 9, Article ID: 989950.
https://doi.org/10.3389/fmed.2022.989950
[23]  Cyriac, R. and Lee, K. (2024) Glutaminase Inhibition as Potential Cancer Therapeutics: Current Status and Future Applications. Journal of Enzyme Inhibition and Medicinal Chemistry, 39, Article ID: 2290911.
https://doi.org/10.1080/14756366.2023.2290911
[24]  Bachert, C., H?rmann, K., M?sges, R., et al. (2003) An Update on the Diagnosis and Treatment of Sinusitis and Nasal Polyposis. Allergy, 58, 176-191.
https://doi.org/10.1034/j.1398-9995.2003.02172.x
[25]  Bermúdez, M.A., Pereira, L., Fraile, C., et al. (2022) Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells, 11, Article No. 2146.
https://doi.org/10.3390/cells11142146
[26]  Szustak, M., Korkus, E., Madaj, R., et al. (2024) Lysophosphatidylcholines Enriched with Cis and Trans Palmitoleic Acid Regulate Insulin Secretion via GPR119 Receptor. ACS Medicinal Chemistry Letters, 15, 197-204.
https://doi.org/10.1021/acsmedchemlett.3c00263
[27]  Cavallero, S., Roustaei, M., Satta, S., et al. (2024) Exercise Mitigates Flow Recirculation and Activates Metabolic Transducer SCD1 to Catalyze Vascular Protective Metabolites. Science Advances, 10, Eadj7481.
https://doi.org/10.1126/sciadv.adj7481
[28]  Cetin, E., Porter, L.M. and Burak, M.F. (2024) Protocol for a Randomized Placebo-Controlled Clinical Trial Using Pure Palmitoleic Acid to Ameliorate Insulin Resistance and Lipogenesis in Overweight and Obese Subjects with Prediabetes. Frontiers in Endocrinology, 14, Article ID: 1306528.
https://doi.org/10.3389/fendo.2023.1306528
[29]  Yang, Z.H., Takeo, J. and Katayama, M. (2013) Oral Administration of Omega-7 Palmitoleic Acid Induces Satiety and the Release of Appetite-Related Hormones in Male Rats. Appetite, 65, 1-7.
https://doi.org/10.1016/j.appet.2013.01.009
[30]  Matthan, N.R., Dillard, A., Lecker, J.L., et al. (2009) Effects of Dietary Palmitoleic Acid on Plasma Lipoprotein Profile and Aortic Cholesterol Accumulation Are Similar to Those of Other Unsaturated Fatty Acids in the F1B Golden Syrian Hamster. The Journal of Nutrition, 139, 215-221.
https://doi.org/10.3945/jn.108.099804
[31]  Papsdorf, K., Miklas, J.W., Hosseini, A., et al. (2023) Lipid Droplets and Peroxisomes Are Co-Regulated to Drive Lifespan Extension in Response to Mono-Unsaturated Fatty Acids. Nature Cell Biology, 25, 672-684.
https://doi.org/10.1038/s41556-023-01136-6
[32]  李杰萍, 邹建平, 江絮萍, 等. 子宫内膜癌患者外周血红细胞膜脂肪酸组分变化及其与发病风险的关系[J]. 山东医药, 2023, 63(35): 5-9.
[33]  颜清, 杨紫伟, 戴锦娜. 游离单不饱和脂肪酸对胸腔积液良恶性的鉴别诊断[J]. 中华实用诊断与治疗杂志, 2018, 32(8): 751-754.
https://doi.org/10.13507/j.issn.1674-3474.2018.08.007
[34]  Snaebjornsson, M.T., Janaki-Raman, S. and Schulze, A. (2020) Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metabolism, 31, 62-76.
https://doi.org/10.1016/j.cmet.2019.11.010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133