全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的遥感旋转图像检测
Remote Sensing Rotation Image Detection Based on Deep Learning

DOI: 10.12677/mos.2024.133325, PP. 3566-3579

Keywords: 遥感图像,旋转目标检测,轻量级,注意力机制,卷积神经网络
Remote Sensing Image
, Rotated Object Detection, Lightweight, Attention Mechanism, Convolutional Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

旋转目标检测是目前遥感图像目标检测的重要任务之一。遥感图像拥有众多小目标,检测目标密集,目标方向任意等特点。针对上述问题,提出了一种轻量级无锚框旋转目标检测算法YOLOv8-LR。首先,在主干网络和特征融合之间设计了轻量级通道空间特征增强模块,增加特征图的通道信息,提升了对遥感图像的小目标预测能力;其次,轻量化特征融合网络,在不降低检测准确率的情况下,减少模型计算复杂度;最后,增加网络的输出维度,将角度信息引入损失函数,使模型具备旋转框检测条件。实验结果表明,在DOTA数据集上,该方法检测精度高达77.2%。该模型具有良好的目标检测性能。
Rotated object detection is currently one of the important tasks for remote sensing image object detection. Remote sensing images have characteristics such as inconsistent scales, dense detection targets, and arbitrary target directions. In response to the above issues, a lightweight anchor-free rotated object detection algorithm named YOLOv8-LR is proposed. Firstly, a lightweight channel-spatial feature enhancement module is designed between the backbone network and feature fusion to increase the channel information of the feature map and improve the prediction ability of small targets in remote sensing images. Secondly, the lightweight feature fusion network is used to reduce the computational complexity of the model without reducing the detection accuracy. Finally, the output dimension of the network is increased, and angle information is introduced into the loss function, so that the model has the conditions for rotated bounding box detection. Experimental results show that the detection accuracy of this method reaches 77.2% on the DOTA datasets, respectively. The model has good object detection performance.

References

[1]  Ding, J., Xue, N., Long, Y., et al. (2019) Learning RoI Transformer for Oriented Object Detection in Aerial Images. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 15-20 June 2019, 2849-2858.
https://doi.org/10.1109/CVPR.2019.00296
[2]  Guo, Z., Liu, C., Zhang, X., et al. (2021) Beyond Bounding-Box: Convex-Hull Feature Adaptation for Oriented and Densely Packed Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 19-25 June 2021, 8792-8801.
https://doi.org/10.1109/CVPR46437.2021.00868
[3]  Han, J., Ding, J., Li, J., et al. (2021) Align Deep Features for Oriented Object Detection. IEEE Transactions on Geoscience and Remote Sensing, 60, Article ID: 5602511.
https://doi.org/10.1109/TGRS.2021.3062048
[4]  Han, J., Ding, J., Xue, N., et al. (2021) Redet: A Rotation-Equivariant Detector for Aerial Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 19-25 June 2021, 2786-2795.
https://doi.org/10.1109/CVPR46437.2021.00281
[5]  Hou, L., Lu, K., Xue, J., et al. (2022) Shape-Adaptive Selection and Measurement for Oriented Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 923-932.
https://doi.org/10.1609/aaai.v36i1.19975
[6]  Lang, S., Ventola, F. and Kersting, K. (2021) Dafne: A One-Stage Anchor-Free Deep Model for Oriented Object Detection.
[7]  Li, W., Chen, Y., Hu, K., et al. (2022) Oriented Reppoints for Aerial Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, 18-24 June 2022, 1829-1838.
https://doi.org/10.1109/CVPR52688.2022.00187
[8]  Li, Z., Hou, B., Wu, Z., et al. (2023) FCOSR: A Simple Anchor-Free Rotated Detector for Aerial Object Detection. Remote Sensing, 15, Article No. 5499.
https://doi.org/10.3390/rs15235499
[9]  Ming, Q., Zhou, Z., Miao, L., et al. (2021) Dynamic Anchor Learning for Arbitrary-Oriented Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 2355-2363.
https://doi.org/10.1609/aaai.v35i3.16336
[10]  Xie, X., Cheng, G., Wang, J., et al. (2021) Oriented R-CNN for Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, 11-17 October 2021, 3520-3529.
https://doi.org/10.1109/ICCV48922.2021.00350
[11]  Yang, X., Yan, J., Feng, Z., et al. (2021) R3det: Refined Single-Stage Detector with Feature Refinement for Rotating Object. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 3163-3171.
https://doi.org/10.1609/aaai.v35i4.16426
[12]  Tian, Z., Shen, C., Chen, H., et al. (2019) FCOS: Fully Convolutional One-Stage Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, 27 October-2 November 2019, 9627-9636.
https://doi.org/10.1109/ICCV.2019.00972
[13]  Ren, S., He, K., Girshick, R., et al. (2016) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031
[14]  Lin, T.Y., Goyal, P., Girshick, R., et al. (2017) Focal Loss for Dense Object Detection. Proceedings of the IEEE International Conference on Computer Vision, Venice, 22-29 October 2017, 2980-2988.
https://doi.org/10.1109/ICCV.2017.324
[15]  Yang, Z., Liu, S., Hu, H., et al. (2019) Reppoints: Point Set Representation for Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, 27 October-2 November 2019, 9657-9666.
https://doi.org/10.1109/ICCV.2019.00975
[16]  Jocher, G. (2023) Yolov8.
https://github.com/ultralytics/ultralytics
[17]  Yang, X., Hou, L., Zhou, Y., et al. (2021) Dense Label Encoding for Boundary Discontinuity Free Rotation Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 19-25 June 2021, 15819-15829.
https://doi.org/10.1109/CVPR46437.2021.01556
[18]  Yang, X. and Yan, J. (2020) Arbitrary-Oriented Object Detection with Circular Smooth Label. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, 23-28 August 2020, 677-694.
https://doi.org/10.1007/978-3-030-58598-3_40
[19]  Yang, X., Yan, J., Ming, Q., et al. (2021) Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss. International Conference on Machine Learning. PMLR, 18-24 July 2021, 11830-11841.
[20]  Li, X., Wang, W., Wu, L., et al. (2020) Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6-12 December 2020, 21002-21012.
[21]  Llerena, J.M., Zeni, L.F., Kristen, L.N., et al. (2021) Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection.
[22]  Lin, T.Y., Dollár, P., Girshick, R., et al. (2017) Feature Pyramid Networks for Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 2117-2125.
https://doi.org/10.1109/CVPR.2017.106
[23]  Liu, S., Qi, L., Qin, H., et al. (2018) Path Aggregation Network for Instance Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-22 June 2018, 8759-8768.
https://doi.org/10.1109/CVPR.2018.00913
[24]  He, K., Zhang, X., Ren, S., et al. (2015) Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916.
https://doi.org/10.1109/TPAMI.2015.2389824
[25]  Li, D., Hu, J., Wang, C., et al. (2021) Involution: Inverting the Inherence of Convolution for Visual Recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 19-25 June 2021, 12321-12330.
https://doi.org/10.1109/CVPR46437.2021.01214
[26]  Chen, B., Zhang, Z., Liu, N., et al. (2020) Spatiotemporal Convolutional Neural Network with Convolutional Block Attention Module for Micro-Expression Recognition. Information, 11, Article No. 380.
https://doi.org/10.3390/info11080380
[27]  Li, H., Li, J., Wei, H., et al. (2022) Slim-Neck by GSConv: A Better Design Paradigm of Detector Architectures for Autonomous Vehicles.
[28]  Yang, X., Yang, X., Yang, J., et al. (2021) Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 6-14 December 2021, 18381-18394.
[29]  Xia, G, S., Bai, X., Ding, J., et al. (2018) DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 3974-3983.
https://doi.org/10.1109/CVPR.2018.00418
[30]  金睿蛟, 王堃, 刘敏豪, 等. 基于DETR和改进去噪训练的光学遥感图像多尺度旋转目标检测[J]. 激光与光电子学进展, 2024, 61(2): 356-366.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133