|
基于深度神经网络的微扰动压入式沉井顶压力智能预测方法
|
Abstract:
为了提高沉井施工精度,提出了一种基于深度神经网络的微扰动压入式沉井顶压力智能预测方法。该方法针对沉井下沉状态参数与油缸顶压力之间的强非线性、高维度复杂关系,建立深度神经网络预测模型,对微扰动压入式沉井的油缸顶压力进行智能预测。实验结果表明,在相同的作业条件下,与LSTM和LSSVR模型相比,本文建立的深度神经网络预测模型对油缸顶压力的预测精度更高,能有效修正沉井下压过程姿态偏差和提高沉井施工精度,为压入式沉井姿态控制提供了可行的施工保障。
In order to improve the accuracy of open caisson construction, a deep neural network-based intelligent prediction method of top pressure of micro-disturbed press-in open caisson is proposed. Aiming at the strong nonlinear and high-dimensional complex relationship between open caisson sinking state parameters and cylinder top pressure, the method establishes a deep neural network prediction model to intelligently predict the cylinder top pressure of micro-disturbed press-in open caisson. The experimental results show that under the same operating conditions, the deep neural network prediction model established in this paper has a higher prediction accuracy of cylinder top pressure compared with LSTM and LSSVR models, which can effectively correct the attitude deviation of sinking process and improve the accuracy of sinking construction, and provide feasible construction guarantee for the attitude control of press-in open caisson.
[1] | 韩鹏鹏, 仇正中, 张磊, 等. 常泰长江大桥沉井水下抗分散混凝土施工关键技术[J]. 施工技术(中英文), 2023, 52(18): 84-89. |
[2] | Dammala, P.K.B, Hattacharya, S.K, Rishna, A.M., et al. (2017) Scenario Based Seismic Re-Qualification of Caisson Supported Major Bridges—A Case Study of Saraighat Bridge. Soil Dynamics and Earthquake Engineering, 100, 270-275. https://doi.org/10.1016/j.soildyn.2017.06.005 |
[3] | 詹志伟, 张倬博, 张贤. 沉井施工工艺在给排水工程中的应用[J]. 广东土木与建筑, 2023, 30(9): 94-96, 102. |
[4] | Lai, F., Liu, S., Li, Y., et al. (2022) A New Installation Technology of Large Diameter Deeply-Buried Caissons: Practical Application and Observed Performance. Tunnelling and Underground Space Technology, 125, Article ID: 104507. https://doi.org/10.1016/j.tust.2022.104507 |
[5] | 翟林, 邸志飞. 沉井式一体化污水提升泵站设计要点探讨[J]. 科技创新与应用, 2023, 13(31): 117-121. |
[6] | 陆东燕. 雨水泵站工程沉井下沉施工监督管控[J]. 山西建筑, 2023, 49(9): 107-110. |
[7] | 简青松. 大型沉井下沉施工力学分析与工程应用[J]. 建筑科技, 2023, 7(5): 70-74. |
[8] | Guo, M., Dong, X. and Yang, Z. (2023) Settlement Analysis of the Giant Open Caisson during the Construction of the Changtai Yangtze River Bridge. Frontiers in Earth Science, 10, Article ID: 1056695. https://doi.org/10.3389/feart.2022.1056695 |
[9] | 巫晨笛, 郑立宁, 胡熠, 等. 沉井可控下沉施工技术——以苏州某地下筒仓式停车库建设项目为例[J]. 技术与市场, 2023, 30(7): 78-83, 88. |
[10] | 李军堂. 沪通长江大桥主航道桥沉井施工关键技术[J]. 桥梁建设, 2015, 45(6): 12-17. |
[11] | 蒋万永. 污水泵站沉井施工技术优化措施分析[J]. 四川水泥, 2023(3): 169-171. |
[12] | 张峥愈, 王顺辉. 道路工程雨水沉井施工要点及其下沉时倾斜的控制措施[J]. 工程机械与维修, 2023(5): 250-252. |
[13] | 刘桂荣. 复杂环境下微扰动压入式薄壁钢沉井工艺研究[J]. 山西建筑, 2022, 48(6): 71-74. |
[14] | 邓彬, 张磊, 郑鹏鹏, 等. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究[J]. 建筑科学与工程学报, 2023, 40(5): 174-182. |
[15] | 刘欢华. 对澳供水深沉井压入式助沉措施技术研究[J]. 低碳世界, 2019, 9(2): 128-129. |
[16] | Jiang, B., Yu, T., Peng, W., et al. (2023) Analysis of Mechanism of Sand Gushing and Sudden Sinking of Ultra-Large Deep-Water Open Caisson in Sand via Field and Model Tests. Applied Ocean Research, 130, Article ID: 103436. https://doi.org/10.1016/j.apor.2022.103436 |
[17] | 黄丁, 李耀良, 徐伟. 压入式沉井侧摩阻力的监测及分析[J]. 建筑施工, 2012, 34(10): 980-983. |
[18] | 刘鸿鸣. 压入式下沉技术在沉井施工中的应用[J]. 建筑施工, 2014, 36(5): 571-572. |
[19] | 杨子松, 王海俊, 姚人杰, 等. 压入式钢壳沉井施工工艺及其在工程中的应用[J]. 建筑施工, 2022, 44(8): 1904-1906, 1919. |
[20] | Yin, X., Wang, H., Pisano, F., et al. (2023) Deep Learning-Based Design Model for Suction Caissons on Clay. Ocean Engineering, 286, Article ID: 115542. https://doi.org/10.1016/j.oceaneng.2023.115542 |
[21] | 刘翰培, 汪宇轩, 王亚琴, 等. 深度神经网络轧制力建模及其并行优化研究[J]. 控制工程, 2022, 29(8): 1379-1386. |
[22] | Li, Z., Liang, J., Zhang, X., et al. (2023) Study on Soil Parameter Evolution during Ultra-Large Caisson Sinking Based on Artificial Neural Network Back Analysis. Sustainability, 15, Article ID: 10627. https://doi.org/10.3390/su151310627 |
[23] | 白云腾, 王晓明, 录哲元, 等. 波形钢腹板连续刚构桥架设过程的智能化施工控制[J]. 建筑科学与工程学报, 2022, 39(4): 137-145. |
[24] | 李波, 马帅, 刘强, 等. 基于深度神经网络的立式机床热误差建模研究[J]. 组合机床与自动化加工技术, 2023(5): 160-163. |
[25] | 陈凌阳, 崔郎郎, 陈永辉, 等. BP神经网络预测橡胶隔震支座竖向刚度[J]. 建筑科学与工程学报, 2023, 40(6): 83-90. |