全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

太赫兹条带SAR的PFA成像与误差补偿方法
PFA Imaging and Error Compensation Methods for Terahertz Strip-Map SAR

DOI: 10.12677/mos.2024.133314, PP. 3449-3461

Keywords: 极坐标格式算法,合成孔径雷达,最大对比度算法,条带探测
Polar Format Algorithm
, Synthetic Aperture Radar, Maximum Contrast Algorithm, Strip-Map

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于成像分辨率高、成像帧频高等优势,太赫兹合成孔径雷达(Synthetic Aperture Radar, SAR)正日益受到广泛的关注。而太赫兹波束窄使得其成像幅宽相对较小,这也正好符合极坐标格式算法(Polar Format Algorithm, PFA)的应用场景。然而PFA是针对聚束SAR成像的,不能直接应用于条带SAR;同时随着太赫兹SAR分辨率的提升,PFA对运动误差的二维空变影响无法忽视。为解决以上问题,本文提出了一种太赫兹条带SAR的PFA成像与误差补偿方法。首先通过确定条带SAR与聚束SAR之间的补偿函数实现二者的等效转换,拓宽PFA的应用范围;其次在PFA处理前采用互相关方法进行运动误差的粗补偿以减小PFA对运动误差的二维耦合影响;最后在PFA之后采用最大对比度自聚焦算法进行运动误差精补偿来满足太赫兹SAR的成像要求。仿真实验结果验证了该方法的有效性和鲁棒性。
Due to its high imaging resolution and frame rate, terahertz (THz) synthetic aperture radar (SAR) is increasingly attracting widespread attention. The narrow beam of terahertz waves results in a relatively small imaging swath, which aligns well with the application scenario of the Polar Format Algorithm (PFA). However, PFA is designed for spotlight SAR imaging and cannot be directly applied to stripmap SAR; moreover, with the improvement of THz SAR resolution, the two-dimensional space-variant impact of motion errors by PFA cannot be ignored. To address these issues, this paper proposes a PFA imaging and error compensation method for THz stripmap SAR. Initially, by establishing a compensation function between stripmap SAR and spotlight SAR for an equivalent conversion, the application range of PFA is expanded. Subsequently, a cross-correlation method is used for coarse compensation of motion errors before PFA processing to reduce the two-dimensional coupling impact of PFA on motion errors. Finally, a maximum contrast autofocus algorithm is applied after PFA for fine compensation of motion errors to meet the imaging requirements of terahertz SAR. Simulation experimental results verify the effectiveness and robustness of this method.

References

[1]  Li, Y., et al. (2023) A Novel 2-D Autofocusing Algorithm for Real Airborne Stripmap Terahertz Synthetic Aperture Radar Imaging. IEEE Geoscience and Remote Sensing Letters, 20, 1-5.
https://doi.org/10.1109/LGRS.2023.3323266
[2]  Zhang, Z., Wang, H., Yang, Q. and Deng, B. (2022) Analysis of High Squint Stripmap SAR Imaging in the Terahertz Band. 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Harbin, 12-15 August 2022, 1-3.
https://doi.org/10.1109/ICMMT55580.2022.10023175
[3]  Song, Y., Hai, Y., Wu, J., Li, Z. and Yang, J. (2021) An Efficient PFA Subaperture Algorithm for Video SAR Imaging. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, 11-16 July 2021, 5179-5182.
https://doi.org/10.1109/IGARSS47720.2021.9554136
[4]  Han, S., Zhu, D. and Mao, X. (2022) A Modified Space-Variant Phase Filtering Algorithm of PFA for Bistatic SAR. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
https://doi.org/10.1109/LGRS.2020.3047617
[5]  Liu, J., et al. (2023) Bistatic PFA Parallel Algorithm Based on Double Chirp-Z Transforms and The Dsp Implementation. IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, 16-21 July 2023, 8118-8121.
https://doi.org/10.1109/IGARSS52108.2023.10281914
[6]  Nie, X., Lei, W. and Zhuang, L. (2022) A Two-Step Wide-Scene Polar Format Algorithm for High-Resolution Highly-Squinted SAR. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
https://doi.org/10.1109/LGRS.2022.3140865
[7]  Yeo, T.S., Tan, N.L., Lu, Y.H. and Zhang, C.B. (1998) A Stripmap to Spotlight Data Converting Algorithm. IGARSS98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings (Cat. No.98CH36174), Seattle, 6-10 July 1998, 1168-1170.
https://doi.org/10.1109/IGARSS.1998.699707
[8]  Hao, Z., Sun, J. and Gu, D. (2022) A Novel Motion Compensation Method for High Resolution Terahertz SAR Imaging. 2022 15th International Congress on Image and Signal Processing, Beijing, 5-7 November 2022, 1-6.
https://doi.org/10.1109/CISP-BMEI56279.2022.9979931
[9]  Fornaro, G. (1999) Trajectory Deviations in Airborne SAR: Analysis and Compensation. IEEE Transactions on Aerospace and Electronic Systems, 35, 997-1009.
https://doi.org/10.1109/7.784069
[10]  Xing, M., Jiang, X., Wu, R., Zhou, F. and Bao, Z. (2009) Motion Compensation for UAV SAR Based on Raw Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 47, 2870-2883.
https://doi.org/10.1109/TGRS.2009.2015657
[11]  Fitzgerrel, A., et al. (2000) Two-Dimensional Phase Gradient Autofocus. SPIE Press, Washington, 162-173.
[12]  Zhu, D. (2009) SAR Signal-Based Motion Compensation through Combining PGA and 2-D Map Drift. 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, 26-30 October 2009, 435-438.
https://doi.org/10.1109/APSAR.2009.5374289
[13]  Mao, X. and Zhu, D. (2016) Two-Dimensional Autofocus for Spotlight SAR Polar Format Imagery. IEEE Transactions on Computational Imaging, 2, 524-539.
https://doi.org/10.1109/TCI.2016.2612945
[14]  Fu, X., Wang, B., Xiang, M., Jiang, S. and Sun, X. (2019) Residual RCM Correction for LFM-CW Mini-SAR System Based on Fast-Time Split-Band Signal Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 57, 4375-4387.
https://doi.org/10.1109/TGRS.2019.2890978

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133