全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于特征的表面表达模型–体参数化模型转化方法
Feature-Based Transformation Method of Boundary Representation to Volume Parametric Model

DOI: 10.12677/mos.2024.133307, PP. 3379-3386

Keywords: 模型特征,等几何分析,体参数化模型,交互式建模
Model Features
, Isogeometric Analysis, Volume Parametric Model, Interactive Modeling

Full-Text   Cite this paper   Add to My Lib

Abstract:

体参数化模型由于其可以直接用于等几何分析的特点,在计算机辅助设计领域受到广泛关注。为保证模型质量,提高体参数化模型建模效率,本文对模型特征进行定义,提出可应用于体参数化模型的特征树与父子特征框架,搭建以特征为主导的数据结构,用特征来控制表面表达模型数据的显示和交互,并在后端同时生成相应的体参数化模型。以轴承座模型为例,用该方法得到的轴承座体参数化模型可以直接用于等几何分析,分析结果与ANSYS有限元分析结果相近,证明该方法的可靠性。
Parametric solid models have garnered widespread attention in the field of computer-aided design due to their direct applicability to isogeometric analysis. To ensure model quality and enhance the efficiency of parametric solid modeling, this paper defines model features and proposes a feature tree and parent-child feature framework applicable to parametric solid models. A data structure led by features is constructed, using them to control the display and interaction of surface representation model data, while simultaneously generating the corresponding parametric solid model at the backend. Taking the bearing base model as an example, the parametric solid model derived from this method can be directly used for isogeometric analysis, with results closely matching those from ANSYS finite element analysis, thereby proving the reliability of this approach.

References

[1]  苑红波, 韩军武, 戚章明, 等. 基于Pro/E的真空挤出机机头CAD/CAE/CAM一体化研究[J]. 机械研究与应用, 2023, 36(1): 184-186.
[2]  Kim, B.C. and Mun, D. (2014) Feature-Based Simplification of Boundary Representation Models Using Sequential Iterative Volume Decomposition. Computers & Graphics, 38, 97-107.
https://doi.org/10.1016/j.cag.2013.10.031
[3]  罗月童, 樊晓菁, 俞盛朋, 等. 基于面壳封闭的B-Rep至CSG转换算法[J]. 计算机辅助设计与图形学学报, 2014, 26(10): 1673-1673.
[4]  Kang, P. and Youn, S.-K. (2015) Isogeometric Analysis of Topologically Complex Shell Structures. Finite Elements in Analysis and Design, 99, 68-81.
https://doi.org/10.1016/j.finel.2015.02.002
[5]  Marussig, B. (2018) Isogeometric Analysis with Trimmed Cad Models. PAMM, 18, 1-4.
https://doi.org/10.1002/pamm.201800184
[6]  Praciano, J.S.C., Barros, P.S.B., Barroso, E.S., et al. (2019) An Isogeometric Formulation for Stability Analysis of Laminated Plates and Shallow Shells. Thin-Walled Structures, 143, 1-13.
https://doi.org/10.1016/j.tws.2019.106224
[7]  Akhras, H., Elguedj, T., Gravouil, A., et al. (2016) Isogeometric Analysis-Suitable Trivariate NURBS Models from Standard B-Rep Models. Computer Methods in Applied Mechanics and Engineering, 307, 256-274.
https://doi.org/10.1016/j.cma.2016.04.028
[8]  Strodthoff, B. and Jüttler, B. (2017) Automatic Decomposition of 3D Solids into Contractible Pieces Using Reeb graphs. Computer-Aided Design, 90, 157-167.
https://doi.org/10.1016/j.cad.2017.05.006
[9]  Zuo, B.Q., Huang, Z.D., Wang, Y.W., et al. (2015) Isogeometric Analysis for CSG Models. Computer Methods in Applied Mechanics and Engineering, 285, 102-124.
https://doi.org/10.1016/j.cma.2014.10.046
[10]  Liu, L., Zhang, Y., Hughes, T.J.R., et al. (2014) Volumetric T-Spline Construction Using Boolean Operations. Engineering with Computers, 30, 425-439.
https://doi.org/10.1007/s00366-013-0346-6
[11]  Massarwi, F. and Elber, G. (2016) A B-Spline Based Framework for Volumetric Object Modeling. Computer-Aided Design, 78, 36-47.
https://doi.org/10.1016/j.cad.2016.05.003
[12]  Massarwi, F., Antolin, P. and Elber, G. (2019) Volumetric Untrimming: Precise Decomposition of Trimmed Trivariates into Tensor Products. Computer Aided Geometric Design, 71, 1-15.
https://doi.org/10.1016/j.cagd.2019.04.005
[13]  Camba, J.D., Company, P. and Naya, F. (2022) Sketch-Based Modeling in Mechanical Engineering Design: Current Status and Opportunities. Computer-Aided Design, 150, Article ID: 103283.
https://doi.org/10.1016/j.cad.2022.103283
[14]  Barr, A.H. (1984) Global and Local Deformations of Solid Primitives. Computer Graphics, 18, 21-30.
https://doi.org/10.1145/964965.808573
[15]  张思宇, 余莉, 贾贺, 等. 柔性伞衣织物的自由变形折叠建模及其充气机制研究[J]. 纺织学报, 2021, 42(7): 108-114.
https://doi.org/10.13475/j.fzxb.20200704107
[16]  Hu, S.M., et al. (2001) Modifying the Shape of NURBS Surfaces with Geometric Constraints. Computer Aided Design, 33, 903-912.
https://doi.org/10.1016/S0010-4485(00)00115-9
[17]  Chang, Y.K. and Rockwood, A.P. (1994) A Generalized de Casteljau Approach to 3d Free-Form Deformation. ACM SIGGRAPH Computer Graphics, Association for Computing Machinery, New York, 257-260.
https://doi.org/10.1145/192161.192220
[18]  王兴皮, 李国喜, 戴树智. 特征树及其在CAD/CAPP/CAM集成化中的作用[J]. 计算技术与自动化, 1995(4): 1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133