全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可抗菌的海藻酸钠/棉纤维水凝胶纤维的制备与热稳定性研究
Preparation and Thermal Stability of Antibacterial Sodium Alginate/Cotton Fiber Hydrogel Fiber

DOI: 10.12677/ms.2024.145083, PP. 753-760

Keywords: 海藻酸钠,棉纤维,水凝胶纤维,性能
Sodium Alginate
, Cotton Fiber, Hydrogel Fiber, Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

海藻酸钠(SA)以其来源广泛、价格低廉且毒性极低等特点在伤口敷料领域备受关注,但存在热稳定性差,抗菌性能差等缺点亟待解决。本研究以海藻酸钠为原料,加入粉碎至1 mm的棉纤维进行气动搅拌直至分散完全,得到纺丝原液,选取5 wt%的CaCl2溶液为凝固浴,利用湿法纺丝机进行纺丝得到海藻酸钠/棉纤维水凝胶纤维,其拉伸强度可达1.22 MPa,热分解温度与纯海藻酸钠水凝胶纤维比提升了5.7%,使其具有更高的热稳定性。添加银纳米线增强其抗菌性能,当银纳米线浓度至0.09 mg/mL时抑菌圈直径最大,达到4 mm以上,在伤口敷料领域有良好的发展前景。
Sodium alginate (SA) has attracted much attention in the field of wound dressings due to its wide source, low price, and extremely low toxicity. However, there are shortcomings such as poor thermal stability and poor antibacterial performance that need to be addressed urgently. In this study, sodium alginate was used as the raw material, and cotton fiber crushed to 1 mm was added for pneumatic stirring until complete dispersion to obtain the spinning stock solution. 5 wt% CaCl2 solution was selected as the coagulation bath, and the wet spinning machine was used for spinning to obtain sodium alginate/cotton fiber hydrogel fiber, whose tensile strength reached 1.22 MPa, and the thermal decomposition temperature increased by 5.7% compared with pure sodium alginate hydrogel fiber, making it have higher thermal stability. Adding silver nanowires enhances its antibacterial properties. When the concentration of silver nanowires reaches 0.09 mg/mL, the diameter of the antibacterial zone reaches its maximum, reaching over 4 mm. It has good development prospects in the field of wound dressings.

References

[1]  Jiang, X., Yang, Z., Zhang, J., et al. (2024) Preparation and Characterization of Photosensitive Methacrylate-Grafted Sodium Carboxymethyl Cellulose as an Injectable Material to Fabricate Hydrogels for Biomedical Applications. International Journal of Biological Macromolecules, 263, 130190-130190.
https://doi.org/10.1016/j.ijbiomac.2024.130190
[2]  Fan, Z., Cheng, P., Liu, M., et al. (2020) Dynamic Crosslinked and Injectable Biohydrogels as Extracellular Matrix Mimics for the Delivery of Antibiotics and 3D Cell Culture. RSC Advances, 10, 19587-19599.
https://doi.org/10.1039/D0RA02218G
[3]  Aslam, U.M.K., Abd, I.S.R., Anwarul, H., et al. (2022) F-GO/Sodium Alginate Composite Hydrogels for Tissue Regeneration and Antitumor Applications. International Journal of Biological Macromolecules, 208, 475-485.
[4]  钟启明, 张佳雨, 郭城, 等. 海藻酸钠水凝胶3D打印效果和流变特征及其相关性分析[J].食品工业科技, 2023, 44(23): 21-28.
[5]  陈小芳, 郑国爽, 李茂源, 等. 可注射海藻酸钠水凝胶的制备及应用[J]. 中国组织工程研究, 2024, 28(5): 789-794.
[6]  高宇, 邵盛培. 海藻酸钠复合水凝胶的制备及其细菌检测应用研究[J]. 中国海洋药物, 2022, 41(6): 49-56.
[7]  刘莹松, 郭晓鹏, 魏明珠. 转化生长因子β3复合海藻酸钠水凝胶修复膝关节软骨缺损[J]. 中国组织工程研究, 2022, 26(16): 2504-2509.
[8]  Gao, Q.Q., Kim, B.S. and Gao, G. (2021) Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks. Marine Drugs, 19, Article 708.
https://doi.org/10.3390/md19120708
[9]  Inoguchi, H., Tanaka, T., Maehara, Y., et al. (2007) The Effect of Gradually Graded Shear Stress on the Morphological Integrity of a Huvec-Seeded Compliant Small-Diameter Vascular Graft. Biomaterials, 28, 486-495.
https://doi.org/10.1016/j.biomaterials.2006.09.020
[10]  Thomas, V., Jose, M.V., Chowdhury, S., et al. (2006) Mechano-Morphological Studies of Aligned Nanofibrous Scaffolds of Polycaprolactone Fabricated by Electrospinning. Journal of Biomaterials Science, Polymer Edition, 17, 969-984.
https://doi.org/10.1163/156856206778366022
[11]  Hwang, C.M., Park, Y., Park, J.Y., et al. (2009) Controlled Cellular Orientation on PLGA Microfibers with Defined Diameters. Biomed. Biomedical Microdevices, 11, 739-746.
https://doi.org/10.1007/s10544-009-9287-7
[12]  He, Y.Q., Zhang, N.N., Gong, Q.J., et al. (2012) Alginate/Graphene Oxide Fibers with Enhanced Mechanical Strength Prepared by Wet Spinning. Carbohydrate Polymers, 88, 1100-1108.
https://doi.org/10.1016/j.carbpol.2012.01.071
[13]  Enea, D., Henson, F., Kew, S., et al. (2011) Extruded Collagen Fibres for Tissue Engineering Applications: Effect of Crosslinking Method on Mechanical and Biological Properties. Journal of Materials Science: Materials in Medicine, 22, 1569-1578.
https://doi.org/10.1007/s10856-011-4336-1
[14]  Lei, C., Zhou, H., Feng, Z., et al. (2011) Low-Temperature Liquid Phase Deposited TiO2 Films on Stainless Steel for Photogenerated Cathodic Protection Applications. Applied Surface Science, 257, 7330-7334.
https://doi.org/10.1016/j.apsusc.2011.03.122
[15]  Goli, K.K., Gera, N., Liu, X.M., et al. (2013) Generation and Properties of Antibacterial Coatings Based on Electrostatic Attachment of Silver Nanoparticles to Protein-Coated Polypropylene Fibers. ACS Applied Materials Interfaces, 5, 5298-5306.
https://doi.org/10.1021/am4011644
[16]  Sarmento, B., Ferreira, D., Veiga, F., et al. (2006) Characterization of Insulin-Loaded Alginate Nanoparticles Produced by Ionotropic Pre-Gelation through DSC and FTIR Studies. Carbohydrate Polymers, 66, 1-7.
https://doi.org/10.1016/j.carbpol.2006.02.008
[17]  Yazdanshenas, E.M. and Shateri-Khalilabad, M. (2013) In Situ Synthesis of Silver Nanoparticles on Alkali-Treated Cotton Fabrics. Journal of Industrial Textiles, 42, 459-474.
https://doi.org/10.1177/1528083712444297
[18]  Sneha, B. and Igor, K. (2020) Alginate-Mediated Synthesis of Hetero-Shaped Silver Nanoparticles and Their Hydrogen Peroxide Sensing Ability. Molecules (Basel, Switzerland), 25, Article No. 435.
https://doi.org/10.3390/molecules25030435

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133