全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钢弹簧浮置板轨道减振效果现场与实验室测评研究
Field and Laboratory Test Research on the Vibration Reduction Effect of Steel Spring Floating Slab Track

DOI: 10.12677/ojtt.2024.133020, PP. 161-170

Keywords: 地铁,钢弹簧浮置板轨道,减振效果,实验室测试
Subway
, Steel Spring Floating Slab Track, Vibration Reduction Effect, Laboratory Test

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究分析钢弹簧浮置板轨道减振特性,现场对比测试隧道壁和基础位置的振动特性和减振效果,通过电磁式激振器施加冲击激励对实验室基础位置插入损失进行测评研究,并结合现场测试规律进一步估算出隧道壁位置减振效果。研究表明:振动从基础传至隧道壁后大幅衰减,普通整体道床轨道最大Z振级衰减11.2 dB,钢弹簧浮置板轨道最大Z振级衰减20.0 dB;测点位置和车次对钢弹簧浮置板轨道减振效果评价具有较大影响;实验室测评钢弹簧浮置板轨道在6.3 Hz~12.5 Hz不具有减振效果,在16 Hz以上频段减振效果较好;基础位置的减振效果为7.5 dB,估算隧道壁位置Z振级插入损失为16 dB左右。
In order to study and analyze the vibration reduction characteristics of steel spring floating slab tracks in field and laboratory evaluations, the vibration characteristics and vibration reduction effects of tunnel walls and base positions were compared and tested on site. The insertion loss at the base position in the laboratory was evaluated by applying impact excitation through an electromagnetic vibrator, and the vibration reduction effect at the tunnel wall position was further estimated based on on-site testing patterns. The results show that the vibration attenuates significantly from the base to the tunnel wall, with a maximum Z-vibration level attenuation of 11.2 dB for ordinary tracks and 20.0 dB for steel spring floating slab tracks. The train number and measurement point position have a significant impact on the evaluation of the vibration reduction effect of the steel spring floating plate track. The laboratory evaluation shows that the steel spring floating slab track does not have vibration reduction effect between 6.3 Hz and 12.5 Hz, but has better vibration reduction effect in the frequency band above 16 Hz. The vibration reduction effect at the base position is 7.5 dB, and the estimated Z-vibration level insertion loss at the tunnel wall position is about 16 dB.

References

[1]  刘维宁, 马蒙, 刘卫丰, 等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学: 技术科学, 2016, 46(6): 547-559.
[2]  叶玉华, 郑天恩, 乔玲, 等. 铁路噪声对沿线居民影响的研究[J]. 铁路劳动安全卫生与环保, 1999, 26(3): 141-145.
[3]  夏禾, 曹艳梅. 轨道交通引起的环境振动问题[J]. 铁道科学与工程学报, 2004, 1(1): 44-51.
[4]  于春华. 城市轨道交通轨道减振设计与研究[J]. 铁道工程学报, 2007(4): 77-79.
[5]  伍卫凡. 高等减振轨道过渡段设置方案研究[J]. 铁道工程学报, 2021(12): 56-60, 67.
[6]  Li, X.Z., Guo, Z., Lei, K.N., et al. (2022) Effects of Steel Spring Floating Slab on Vibration and Noise of a Rail Transit Box-Girder. Proceedings of the Institution of Civil Engineers-Transport, 175, 261-274.
https://doi.org/10.1680/jtran.19.00059
[7]  Zhu, S.Y., Yang, J.Z., Yan, H., et al. (2015) Low-Frequency Vibration Control of Floating Slab Tracks Using Dynamic Vibration Absorbers. Vehicle System Dynamics, 53, 1296-1314.
https://doi.org/10.1080/00423114.2015.1046460
[8]  黄俊飞, 秦佳良. 地铁隧道内钢弹簧浮置板轨道的减振效果实测分析[J]. 城市轨道交通研究, 2020, 23(1): 83-86.
[9]  李克飞, 刘维宁, 孙晓静, 等. 北京地铁5号线地下线减振措施现场测试与分析[J]. 铁道学报, 2011, 33(4): 112-118.
[10]  林渝轲, 吴梦瑶, 王平. 120 km/h地铁多种减振轨道结构现场测试与分析[J]. 铁道标准设计, 2018, 62(2): 67-71.
[11]  吴永芳. 轨道减振效果系统评价方法研究[J]. 中国铁道科学, 2013, 34(3): 1-6.
[12]  金浩, 刘维宁. 枕下减振垫铺设方式对梯式轨道减振性能影响试验研究[J]. 土木工程学报, 2015, 48(2): 73-78.
[13]  李明航, 马蒙, 刘维宁, 等. 轨道预载对梯式轨道系统减振效果影响试验研究[J]. 铁道学报, 2020, 42(5): 113-119.
[14]  王金, 高志升, 张鸿飞, 等. 浮置板轨道结构减振性能的落轴试验[J]. 城市轨道交通研究, 2016, 19(10): 37-40 85.
[15]  朱胜阳, 王建伟, 蔡成标, 等. 应用动力吸振器的浮置板轨道低频振动控制特性的试验研究[J]. 铁道学报, 2021, 43(4): 142-149.
[16]  生态环境部. HJ 453-2018 环境影响评价技术导则——城市轨道交通[S]. 北京: 中国环境科学出版社, 2018.
[17]  国家环境保护局. GB/T 10071-1988 城市区域环境振动测量方法[S]. 北京: 中国标准出版社, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133