|
基于图像视觉识别的农村中小型桥梁拱圈线形的方法研究
|
Abstract:
本文提出了一种基于图像视觉识别的方法,用于检测农村中小型桥梁拱圈线形。该方法利用机器视觉技术,结合图像处理和模式识别算法,实现对桥梁拱圈线形的自动识别和检测。首先,通过图像采集设备获取桥梁拱圈的数字图像,然后对图像进行预处理,包括灰度化、边缘检测等操作,以提取出拱圈的轮廓信息。接着,利用形态学处理和特征提取方法对拱圈轮廓进行分析,识别出拱圈的线形特征。最后,通过模式匹配和分类算法对线形特征进行匹配和识别,实现对拱圈线形的自动检测。
This paper presents a method based on image visual recognition to detect the arch circle alignment of small- and medium-sized bridges in rural areas. The method uses computer vision technology, image processing and pattern recognition algorithm to realize the automatic recognition and detection of bridge arch circle alignment. Firstly, the digital image of bridge arch ring is obtained by image acquisition equipment, and then the image is preconditioned, including grayscale and edge detection, so as to extract the contour information of arch ring. Then, morphological processing and feature extraction methods are used to analyze the contour of the arch ring, and the linear features of the arch ring are identified. Finally, the linear feature is matched and recognized by pattern matching and classification algorithms to realize the automatic detection of the arch circle.
[1] | 苏伟达. 基于SAR图像的道路桥梁检测方法研究[J]. 交通世界, 2024(4): 257-259. |
[2] | 张永红. 无损检测技术在公路桥梁检测中的应用[J]. 交通世界, 2024(1): 229-231. |
[3] | 曹升亮, 赵礽晔. 基于图像分析的桥梁裂缝检测技术应用[J]. 建筑机械, 2023(6): 78-81. |
[4] | 王沛恩, 周旭. 基于图像识别的桥梁裂缝检测机器人的研究[J]. 南方农机, 2020, 51(16): 100-101. |
[5] | 赵琪, 孙立双, 袁阳. 基于神经网络的无人机拍摄图像识别[J]. 中国科技论文, 2019, 14(11): 1229-1233. |
[6] | 韩晓健, 赵志成, 沈泽江. 卷积神经网络在桥梁结构表面病害检测中的应用研究[J]. 结构工程师, 2019, 35(2): 106-111. |
[7] | 马成贤, 游雅辰. 铁路桥梁裂缝位置识别与目标检测方法探讨[J]. 铁道勘察, 2019, 45(5): 136-141. |