|
基于低场核磁技术研究混凝土标准养护过程微结构水分演化规律
|
Abstract:
快速准确地评价混凝土养护质量对混凝土的研究具有重要意义。本文采用低场核磁技术研究了大尺寸混凝土试件在标准养护过程中含水量的演变规律,测试的龄期分别为1 d、3 d、7 d、14 d、28 d和56 d,同时建立了与同批次试件的强度的关系。结果表明:随着养护龄期的增加,混凝土水含量不断降低。混凝土在养护过程中内部水的弛豫时间演化规律主要有三类特征。其中,养护期内弛豫时间为0.01~10 ms的孔隙水不断减少,水分降低速率减小;养护期内弛豫时间为10~100 ms的孔隙水持续降低,但14 d后孔隙水不再改变;养护期内弛豫时间为大于100 ms的孔隙水,在养护期内未发生变化,这种弛豫时间的差异说明了不同尺度的混凝土孔隙水化过程的变化特征。相对孔隙水含量与混凝土强度的相关系数R2为0.9938,可为评价混凝土养护质量提供试验依据,能准确高效地评价混凝土的质量。
The rapid and accurate assessment of concrete curing quality is of great significance for concrete research. In this study, low-field nuclear magnetic technology was employed to investigate the evolution law of moisture content in large-sized concrete specimens during the standard curing process. The tested age periods were 1 day, 3 days, 7 days, 14 days, 28 days, and 56 days, and a correlation with the strength of specimens from the same batch was simultaneously established. The results indicate that as the curing period increases, the moisture content of concrete continuously decreases. The evolution law of relaxation times of internal water in concrete during the curing process exhibits three main characteristics. Among them, the pore water with relaxation times of 0.01~10 ms continuously decreases, and the rate of moisture reduction decreases. The pore water with relaxation times of 10~100 ms continues to decrease, but after 14 days, it no longer changes. The pore water with relaxation times exceeding 100 ms shows no changes during the curing period, and this difference in relaxation time illustrates the changing characteristics of the pore hydration process in concrete at different scales. The correlation coefficient (R2) between the relative pore water content and concrete strength is 0.9938, providing a basis for evaluating the quality of concrete curing and enabling an accurate and efficient assessment of concrete quality.
[1] | 杨正宏, 高双双, 于龙, 等. 养护温度对陶粒内水分向水泥浆体中迁移行为的影响[J]. 建筑材料学报, 2020, 23(1): 138-144. |
[2] | 杨进. 高吸水树脂内养护混凝土的微观结构与性能[D]: [博士学位论文]. 武汉: 武汉理工大学, 2017. |
[3] | 罗遥凌, 杨文, 谢昱昊, 闫欣宜, 毕耀. 养护温度对UHPC水化及力学性能影响研究[J]. 硅酸盐通报, 2021, 40(2): 431-438. |
[4] | 张文华, 张云升. 高温养护条件下现代混凝土水化、硬化及微结构形成机理研究进展[J]. 硅酸盐通报, 2015, 34(1): 149-155. |
[5] | 丁平祥, 许艳平, 林伟斌. 养护温度对混凝土水化进程影响研究[J]. 建筑结构, 2022, 52(S2): 1108-1113. |
[6] | 阎培渝, 崔强. 养护制度对高强混凝土强度发展规律的影响[J]. 硅酸盐学报, 2015, 43(2): 133-137. |
[7] | 李晓玲. 早期高温水养护对矿物料混凝土力学性能影响的研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2014. |
[8] | 谢超, 王起才, 李盛, 等. 养护温度和水灰比对混凝土孔结构的影响研究[J]. 混凝土, 2016(6): 15-19, 23. |
[9] | Faure, P.F. and Rodts, S. (2008) Proton NMR Relaxation as a Probe for Setting Cement Pastes. Magnetic Resonance Imaging, 26, 1183-1196. https://doi.org/10.1016/j.mri.2008.01.026 |
[10] | 张爱, 葛勇. 不同粒径纳米氧化硅改性白水泥水化过程的1H低场核磁弛豫特征[J]. 硅酸盐学报, 2021, 49(8): 1662-1669. https://doi.org/10.14062/j.issn.0454-5648.20200878 |
[11] | 姚武, 佘安明, 杨培强. 水泥浆体中可蒸发水的1H核磁共振弛豫特征及状态演变[J]. 硅酸盐学报, 2009, 37(10): 1602-1606. |
[12] | Jehng, J.Y. (1995) Microstructure of Wet Cement Pastes: A Nuclear Magnetic Resonance Study. Ph.D. Thesis, Northwestern University, Evanston. |
[13] | Bhattacharja, S., Moukwa, M., D’Orazio, F., et al. (1993) Microstructure Determination of Cement Pastes by NMR and Conventional Techniques. Advanced Cement Based Materials, 1, 67-76. https://doi.org/10.1016/1065-7355(93)90011-C |
[14] | Fourmentin, M., Faure, P., Rodts, S., et al. (2017) NMR Observation of Water Transfer between a Cement Paste and a Porous Medium. Cement and Concrete Research, 95, 56-64. https://doi.org/10.1016/j.cemconres.2017.02.027 |
[15] | 郎泽军, 金丹, 姚武. 基于低场核磁共振技术的水泥浆体凝结时间及早期强度分析[J]. 建筑材料学报, 2020, 23(1): 25-28. |
[16] | 孙振平, 俞洋, 庞敏, 等. 低场核磁共振技术在水泥基材料研究中的应用及展望[J]. 材料导报, 2011, 25(7): 110-113. |
[17] | Muller, A.C.A., Scrivener, K.L., Gajewicz, A.M., et al. (2013) Use of Bench-Top NMR to Measure the Density, Composition and Desorption Isotherm of C-S-H in Cement Paste. Microporous and Mesoporous Materials, 178, 99-103. https://doi.org/10.1016/j.micromeso.2013.01.032 |
[18] | 许文彬, 李庆斌, 胡昱. 混凝土凝结过程中水分变化规律研究[J]. 水力发电学报, 2017, 36(7): 92-103. |
[19] | García, J.C., Marble, A.E., Balcom, B.J., et al. (2009) Embedded NMR Sensors to Monitor Evaporable Water Loss Caused by Hydration and Drying in Portland Cement Mortar. Cement and Concrete Research, 39, 324-328. https://doi.org/10.1016/j.cemconres.2009.01.011 |
[20] | 李春景, 孙振平, 李奇, 等. 低场核磁共振技术在水泥基材料中的应用[J]. 材料导报, 2016, 30(13): 133-138. |
[21] | 李文郁, 尹健昊, 王健, 等. 低场核磁共振技术在水泥基材料中的理论模型及应用[J]. 硅酸盐学报, 2022, 50(11): 2992-3008. |