|
基于Flow-3D的圆柱形桥墩局部冲刷及防护研究
|
Abstract:
桥梁基础的局部冲刷是导致桥梁水毁的主要因素之一,需要采取一定措施进行防护处理。本文基于Flow-3D软件的水动力学模块和泥沙输运模块,采用RNG k-ε湍流模型对圆柱形桥墩开展了局部冲刷防护三维数值研究,分析了安装护套对圆柱形桥墩局部冲刷防护的效果。计算结果表明:护套装置能够大幅降低最大冲刷深度,最大冲刷深度仅为无防护情况的13%;安装护套装置后,河床冲刷形态较无防护时发生了较大变化,桥墩迎水侧未发生冲刷,最大冲刷深度位置位于护套侧前方距离护套边缘很小距离的位置;在护套两侧冲刷坑后方,形成了与无防护工况类似的较大面积的沙丘拖尾,但由于冲刷程度较小,水流中的泥沙含量较低,沙丘的高度和面积均远小于无防护工况。
Local scour of bridge foundation is one of the main factors leading to water damage of bridges, and certain measures need to be taken for protection treatment. In this paper, based on the hydrodynamic module and sediment transport module of Flow-3D software, the RNG k-ε turbulence model is used to carry out a three-dimensional numerical study on the local scour protection of cylindrical bridge piers, and the effect of installing sheaths on the local scour protection of cylindrical bridge piers is analyzed. Calculation results show that the sheath device can greatly reduce the maximum scour depth, the maximum scour depth is only 13% of the unprotected condition; after the installation of the sheath device, the scour pattern of the riverbed changes greatly compared with the unprotected condition, and the waterward side of the abutment is not scoured, and the location of the maximum scour depth is located in the sheath side of the forward side of the sheath at a very small distance from the edge of the sheath; in the sheath on both sides of the back of the scour crater, a large area of sand dune trailing is formed, similar to the unprotected condition. In the back of the scour pits on both sides of the sheath, a large area of sand dune trailing similar to the unprotected condition is formed, but due to the smaller degree of scour and lower sediment content in the water flow, the height and area of the sand dune are much smaller than that of the unprotected condition.
[1] | Olsen, N.R.B. and Skoglund, M. (1994) Three-Dimensional Numerical Modeling of Water and Sediment Flow in a Sand Trap. Journal of Hydraulic Research, 6, 833-844. https://doi.org/10.1080/00221689409498693 |
[2] | 熊文, 姚浩, 等. 冲刷环境对桥墩冲刷空间形态影响的仿真分析[J]. 哈尔滨工业大学学报, 2016, 48(3): 108-114. |
[3] | 喻鹏, 祝志文. 串列双圆柱桥墩局部冲刷精细化模拟[J]. 中国公路学报, 2019, 32(1): 107-116. |
[4] | 张曙光, 尹进步, 张根广. 基于Flow-3D的圆柱形桥墩局部冲刷大涡模拟[J]. 泥沙研究, 2020, 45(1): 67-73. |
[5] | 王炎, 杨蝶俪, 叶楠, 等. 装配式桥墩防冲刷装置三维数值模拟[J]. 低温建筑技术, 2019, 41(11): 72-75, 84. |
[6] | 黄永江, 牟献友, 白佳乐. 环翼式桥墩挡板最佳安装位置数值模拟[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(3): 101-106. |
[7] | 陈艳梅, 牟献友, 成兰艳, 等. 环翼式桥墩最优挡板形状试验[J]. 水利水电科技进展, 2014(3): 24-29. |
[8] | 成兰艳, 郝拉柱, 牟献友, 等. 环翼式桥墩环翼式挡板最佳延伸长度试验[J]. 水利水电科技进展, 2013(2): 32-36. |
[9] | Nazari-Sharabian, M., Nazari-Sharabian, A., Karakouzian, M., et al. (2020) Sacrificial Piles as Scour Countermeasures in River Bridges: A Numerical Study Using FLOW-3D. Civil Engineering Journal, 6, 1091-1103. https://doi.org/10.28991/cej-2020-03091531 |
[10] | Aly, A.M. and Dougherty, E. (2021) Bridge Pier Geometry Effects on Local Scour Potential: A Comparative Study. Ocean Engineering, 234, Article ID: 109326. https://doi.org/10.1016/j.oceaneng.2021.109326 |
[11] | Kassem, H., El-Masry, A.A. and Diab, R. (2023) Influence of Collar’s Shape on Scour Hole Geometry at Circular Pier. Ocean Engineering, 287, Article ID: 115791. https://doi.org/10.1016/j.oceaneng.2023.115791 |
[12] | Tang, Z., Melville, B., Shamseldin, A.Y., et al. (2024) Experimental Study of Bed Solidification as a Local Scour Coun-termeasure for Offshore Wind Turbine Monopile Foundations. Ocean Engineering, 299, Article ID: 117369. https://doi.org/10.1016/j.oceaneng.2024.117369 |
[13] | Melville, B.W. and Raudkivi, A.J. (1977) Flow Characteristics in Local Scour at Bridge Piers. Journal of Hydraulic Research, 15, 373-380. https://doi.org/10.1080/00221687709499641 |
[14] | Soulsby, R. (1997) Dynamics of Marine Sand. Thomas Telford Publications, London. |
[15] | Mastbergen, D.R. and Van Den Berg, J.H. (2003) Breaching in Fine Sands and the Generation of Sustained Turbidity Currents in Submarine Canyons. Sedimentology, 50, 625-637. https://doi.org/10.1046/j.1365-3091.2003.00554.x |
[16] | 王飞, 张彬, 齐剑峰. 桥墩局部冲刷发展过程的三维动网格模拟[J]. 南水北调与水利科技, 2017, 15(2): 132-137. |