全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

静电纺丝法制备La0.375Sm0.125Sr0.5CoO3-δ阴极及其性能研究
Study on the Preparation and Performance of La0.375Sm0.125Sr0.5CoO3-δ Cathodes by Electrostatic Spinning Method

DOI: 10.12677/japc.2024.132017, PP. 141-150

Keywords: La0.375Sm0.125Sr0.5CoO3-δ,La掺杂,静电纺丝法,固体氧化物燃料电池,纳米纤维
La0.375Sm0.5Sr0.5CoO3-δ
, La-Doped, Electrostatic Spinning Method, Solid Oxide Fuel Cell, Nanofiber

Full-Text   Cite this paper   Add to My Lib

Abstract:

优化固体氧化物燃料电池(SOFC)的电极微观结构、对电极材料进行掺杂取代是提高阴极催化活性的常用手段。本文使用镧元素对传统Sm0.5Sr0.5CoO3-δ (SSC)阴极进行部分取代并通过静电纺丝法制备了La0.375Sm0.125Sr0.5CoO3-δ (LSSC)纤维阴极,研究了前驱体溶液中PVB浓度对纤维物相结构和微观形貌的影响,测试了LSSC对称电池在550℃~750℃间的交流阻抗和反应级数。结果显示,当PVP为9 wt.%时能够制得直径约200 nm、粗细均匀且长度较长的LSSC纤维,在进一步制备成阴极后也基本保留了纤维结构,这有利于氧气向电极内部扩散;LSSC对称电池在700℃时的极化电阻仅0.06 Ω·cm2,性能优异。研究表明,LSSC纤维阴极是一种有潜力的中温SOFC阴极材料。
It is common to optimize the electrode microstructure of solid oxide fuel cells (SOFCs) and to dope the electrode materials with other elements to improve the catalytic activity of the cathode. In this paper, La0.375Sm0.125Sr0.5CoO3-δ (LSSC) fiber cathodes were prepared using lanthanum to partially replace the conventional Sm0.5Sr0.5CoO3-δ (SSC) cathodes and through the electrostatic spinning method. The effects of PVB concentration in the precursor solution on the physical phase structure and microscopic morphology of the fibers were investigated, and the polarization impedance and reaction level of the LSSC fiber cathode were tested between 550?C and 750?C. The results show that LSSC fibers with a diameter of about 200 nm, uniform thickness and long length can be produced when the PVP is 9 wt.%. The fiber structure of LSSC fibers is also basically retained when they are further prepared as cathodes, which is beneficial for the diffusion of oxygen into the electrodes; moreover, the polarization resistance of LSSC symmetric cells is only 0.06 Ω·cm2 at 700?C, which is an excellent performance. The study shows that the LSSC fiber cathode is a potential cathode material for medium-temperature SOFC.

References

[1]  侯绪凯, 赵田田, 孙荣峰, 等. 中国氢燃料电池技术发展及应用现状研究[J]. 当代化工研究, 2022(17): 112-117.
[2]  Ahmed, N., Devi, S., Dar, M.A., et al. (2023) Anode Material for Solid Oxide Fuel Cell: A Review. Indian Journal of Physics, 98, 877-888.
[3]  Long, Q., Sha, R., Wang, R., et al. (2023) Research Progress of Composite Cathode Materials for Solid Oxide Fuel Cells. Progress in Natural Science: Materials International, 33, 267-278.
https://doi.org/10.1016/j.pnsc.2023.08.016
[4]  吕世权, 侯路锦, 孟祥伟, 等. 中低温固体氧化物燃料电池PrBa0.5Sr0.5Fe2O5δ阴极材料的制备及其性能研究[J]. 吉林师范大学学报(自然科学版), 2023, 44(3): 25-30.
[5]  Choolaei, M., Vostakola, M.F. and Horri, B.A. (2023) Recent Advances and Challenges in Thin-Film Fabrication Techniques for Low-Temperature Solid Oxide Fuel Cells. Crystals, 13, Article No. 1008.
https://doi.org/10.3390/cryst13071008
[6]  Jarot, R., Muchtar, A., Wan Daud, W.R., et al. (2011) Fabrication of Porous LSCF-SDC Carbonates Composite Cathode for Solid Oxide Fuel Cell (SOFC) Applications. Key Engineering Materials, 471, 179-184.
https://doi.org/10.4028/www.scientific.net/KEM.471-472.179
[7]  Liu, M., Ding, D., Blinn, K., et al. (2012) Enhanced Performance of LSCF Cathode through Surface Modification. International Journal of Hydrogen Energy, 37, 8613-8620.
https://doi.org/10.1016/j.ijhydene.2012.02.139
[8]  徐娜, 苏少辉, 滕茹煊, 等. 中低温固体氧化物燃料电池阴极材料研究进展[J]. 吉林师范大学学报(自然科学版), 2022, 43(4): 108-115.
[9]  Lee, J.G., Park, J.H. and Shul, Y.G. (2014) Tailoring Gadolinium-Doped Ceria-Based Solid Oxide Fuel Cells to Achieve 2 W cm2 at 550 C. Nature Communications, 5, Article No. 4045.
https://doi.org/10.1038/ncomms5045
[10]  Qiu, P., Wang, A., Zheng, H., et al. (2018) LaCoO3-δ-Coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ: A Promising Cathode Material with Remarkable Performance and CO2 Resistance for Intermediate Temperature Solid Oxide Fuel Cells. International Journal of Hydrogen Energy, 43, 20696-20703.
https://doi.org/10.1016/j.ijhydene.2018.09.154
[11]  丛涛, 樊丽权, 王宇威, 等. 钙钛矿型氧化物Sm0.5Sr0.5CoO3?δ制备方法的研究进展[J]. 化学世界, 2022, 63(5): 257-264.
[12]  李瑞锋, 郑玉船, 吴甜甜, 等. Sm0.5Sr0.5CoO3?δ-Ce0.8Sm0.2O1.9复合阴极的制备及其电化学性能[J]. 材料科学与工程学报, 2020, 38(3): 466-470.
[13]  Ishihara, T., Islamiyah, S., Kluczny, M., et al. (2021) PrBaCo2O5 δ-Sm0.5Sr0.5CoO3 Composite Oxide as Active Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. ECS Transactions, 103, Article No. 1425.
https://doi.org/10.1149/10301.1425ecst
[14]  Park, J.-W., Shin, J. and Ju, Y.-W. (2023) Influence of Calcination Temperature on Electrochemical Properties of Perovskite Oxide Nanofiber Catalysts. Energies, 16, Article No. 4979.
https://doi.org/10.3390/en16134979
[15]  常春, 李宝莹, 纪博伟, 等. 固体氧化物燃料电池阴极材料的研究进展[J]. 稀有金属, 2023, 47(8): 1143-1162.
[16]  Shahrokhi, S., Babaei, A. and Zamani, C. (2018) Electrochemical Performance and Stability of LNC-Infiltrated (La, Sr)MnO3 Oxygen Electrode. AIP Conference Proceedings, 1920, Article ID: 020020.
https://doi.org/10.1063/1.5018952
[17]  张旭, 吴萍萍, 丁利利, 等. 基于交替浸渍法对La0.65Sr0.35MnO3氧电极的性能优化[J]. 复合材料学报, 2022, 39(12): 5736-5746.
[18]  邓帅磊, 王博, 孙明旭, 等. Pr掺杂Sm0.5Sr0.5CoO3阴极的性能研究[J]. 化工新型材料, 2024, 52(2): 160-165.
[19]  周芬, 翟纪敏, 郜建全, 等. Sm0.5-XGdxSr0.5CoO3δ/30% Ce0.9Gd0.1O1.95复合阴极的制备及性能研究[J]. 稀土, 2013, 34(4): 30-34.
[20]  Sun, W., Wang, Y., Fang, S., et al. (2011) Evaluation of BaZr0.1Ce0.7Y0.2O3δ-Based Proton-Conducting Solid Oxide Fuel Cells Fabricated by a One-Step Co-Firing Process. Electrochimica Acta, 56, 1447-1454.
https://doi.org/10.1016/j.electacta.2010.10.048
[21]  Sun, W., Shi, Z. and Liu, W. (2013) Considerable Hydrogen Permeation Behavior through a Dense Ce0.8Sm0.2O2δ (SDC) Asymmetric Thick Film. Journal of the Electrochemical Society, 160, F585.
https://doi.org/10.1149/2.073306jes
[22]  Ascolani-Yael, J., Montenegro-Hernandez, A., Garces, D., et al. (2020) The Oxygen Reduction Reaction in Solid Oxide Fuel Cells: From Kinetic Parameters Measurements to Electrode Design. Journal of Physics: Energy, 2, Article ID: 042004.
https://doi.org/10.1088/2515-7655/abb4ec
[23]  Wachsman, E.D. and Lee, K.T. (2011) Lowering the Temperature of Solid Oxide Fuel Cells. Science, 334, 935-939.
https://doi.org/10.1126/science.1204090
[24]  Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., et al. (2003) A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Composites Science and Technology, 63, 2223-2253.
https://doi.org/10.1016/S0266-3538(03)00178-7
[25]  Tarus, B., Fadel, N., Al-Oufy, A., et al. (2016) Effect of Polymer Concentration on the Morphology and Mechanical Characteristics of Electrospun Cellulose Acetate and Poly(Vinyl Chloride) Nanofiber Mats. Alexandria Engineering Journal, 55, 2975-2984.
https://doi.org/10.1016/j.aej.2016.04.025
[26]  Patil, J.V., Mali, S.S., Kamble, A.S., et al. (2017) Electrospinning: A Versatile Technique for Making of 1D Growth of Nanostructured Nanofibers and Its Applications: An Experimental Approach. Applied Surface Science, 423, 641-674.
https://doi.org/10.1016/j.apsusc.2017.06.116
[27]  Koczkur, K.M., Mourdikoudis, S., Polavarapu, L., et al. (2015) Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Transactions, 44, 17883-17905.
https://doi.org/10.1039/C5DT02964C
[28]  Hong, Y. (2016) Electrospun Fibrous Polyurethane Scaffolds in Tissue Engineering. In: Cooper, S.L. and Guan, J.J., Eds., Advances in Polyurethane Biomaterials, Elsevier, Amsterdam, 543-559.
https://doi.org/10.1016/B978-0-08-100614-6.00019-6
[29]  Rubin Pedrazzo, A., Cecone, C., Morandi, S., et al. (2021) Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on both Morphology and Microstructure. Polymers, 13, Article No. 977.
https://doi.org/10.3390/polym13060977
[30]  Larsson, T., Li, T.S., Xu, M., et al. (2017) Co-Fabrication of Nickel-YSZ Cermet Nanofibers via an Electrospinning Technique. Materials Research Bulletin, 86, 38-43.
https://doi.org/10.1016/j.materresbull.2016.10.006
[31]  Jiang, W., Wei, B., Lü, Z., et al. (2014) Co‐Synthesis of Sm0.5Sr0.5CoO3δ‐Sm0.2Ce0.8O1.9 Composite Cathode with Enhanced Electrochemical Property for Intermediate Temperature SOFCs. Fuel Cells, 14, 966-972.
https://doi.org/10.1002/fuce.201400022
[32]  Chen, S., Xu, H., Zheng, Y., et al. (2021) Performance of Ceramic Cathode Current Collector with Novel Microstructure for Solid Oxide Fuel Cells. Ceramics International, 47, 8453-8460.
https://doi.org/10.1016/j.ceramint.2020.11.211
[33]  Qiu, P., Li, J., Liu, B., et al. (2017) Study on the ORR Mechanism and CO2-Poisoning Resistance of La0.8Sr0.2MnO3?δ-Coated Ba0.5Sr0.5Co0.8Fe0.2O3δ Cathode for Intermediate Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 164, F981-F987.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133