全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

红景天苷促进脑缺血/再灌注后内源性神经再生的作用涉及神经营养因子
The Effect of Salidroside in Promoting Endogenous Neural Regeneration after Cerebral Ischemia/Reperfusion Involves Neurotrophic Factors

DOI: 10.12677/tcm.2024.135156, PP. 1013-1025

Keywords: 红景天苷,脑缺血/再灌注,缺血性中风,神经再生,BDNF
Salidroside
, Cerebral Ischemia/Reperfusion, Ischemic Stroke, Neural Regeneration, BDNF

Full-Text   Cite this paper   Add to My Lib

Abstract:

背景:红景天苷是红景天的主要生物活性物质和药理活性物质,有报道称其对脑缺血/再灌注(I/R)具有神经保护作用。然而,红景天苷是否可以增强脑I/R后的神经再生尚不清楚。本研究探讨了红景天苷对脑I/R后内源性神经再生的影响及相关机制。方法:通过短暂性大脑中动脉闭塞/再灌注(MCAO/R)诱导大鼠局灶性I/R。为了评估神经元的存活率,对缺血半球中的神经核抗原(NeuN)进行免疫组织化学染色。此外,对缺血半球侧脑室下区(SVZ)和纹状体中的增殖性神经祖细胞生物标志物进行免疫荧光双标或三标染色,以研究神经再生情况。此外,使用逆转录聚合酶链式反应(RT-PCR)和酶联免疫吸附测定(ELISA)检测神经营养因子(NTFs)脑源性神经营养因子(BDNF)和神经生长因子(NGF)的表达。结果:红景天苷使I/R损伤后NeuN阳性细胞的损失得以恢复。脑I/R损伤显著增加了5-溴脱氧尿苷(BrdU)和doublecotin (DCX)的表达,增加了SVZ中BrdU/Nestin/DCX共同标记细胞的数量,以及纹状体中BrdU/Nestin/胶质纤维酸性蛋白(GFAP)共同标记细胞的数量。红景天苷治疗进一步促进了BrdU/DCX标记的神经母细胞和BrdU/Nestin/GFAP标记的活性星形胶质细胞的增殖。此外,红景天苷还提高了缺血周边区域BDNF和NGF的mRNA表达和蛋白浓度。结论:红景天苷可促进脑I/R后的内源性神经再生,其作用机制可能涉及对BDNF/NGF的调节。
Background: Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. Methods: Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Results: Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Conclusions: Salidroside enhances the endogenous neural

References

[1]  Paul, S. and Candelario-Jalil, E. (2021) Emerging Neuroprotective Strategies for the Treatment of Ischemic Stroke: An Overview of Clinical and Preclinical Studies. Experimental Neurology, 335, Article ID: 113518.
https://doi.org/10.1016/j.expneurol.2020.113518
[2]  Sarmah, D., Agrawal, V., Rane, P., Bhute, S., Watanabe, M., Kalia, K., Ghosh, Z., Dave, K.R., Yavagal, D.R. and Bhattacharya, P. (2018) Mesenchymal Stem Cell Therapy in Ischemic Stroke: A Meta-Analysis of Preclinical Studies. Clinical Pharmacology and Therapeutics, 103, 990-998.
https://doi.org/10.1002/cpt.927
[3]  Schmidt, A. and Minnerup, J. (2016) Promoting Recovery from Ischemic Stroke. Expert Review of Neurotherapeutics, 16, 173-186.
https://doi.org/10.1586/14737175.2016.1134324
[4]  Tanaka, Y., Tanaka, R., Liu, M., Hattori, N. and Urabe, T. (2010) Cilostazol Attenuates Ischemic Brain Injury and Enhances Neurogenesis in the Subventricular Zone of Adult Mice after Transient Focal Cerebral Ischemia. Neuroscience, 171, 1367-1376.
https://doi.org/10.1016/j.neuroscience.2010.10.008
[5]  Fisch, U., Brégère, C., Geier, F., Chicha, L. and Guzman, R. (2020) Neonatal Hypoxia-Ischemia in Rat Elicits a Region-Specific Neurotrophic Response in SVZ Microglia. Journal of Neuroinflammation, 17, Article No. 26.
https://doi.org/10.1186/s12974-020-1706-y
[6]  Haupt, M., Gerner, S.T., Bahr, M. and Doeppner, T.R. (2023) Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. International Journal of Molecular Sciences, 24, Article No. 4334.
https://doi.org/10.3390/ijms24054334
[7]  Kim, H., Kong, C.S. and Seo, Y. (2022) Salidroside, 8(E)-Nuezhenide, and Ligustroside from Ligustrum japonicum Fructus Inhibit Expressions of MMP-2 and-9 in HT 1080 Fibrosarcoma. International Journal of Molecular Sciences, 23, Article No. 2660.
https://doi.org/10.3390/ijms23052660
[8]  Jiang, Y., Mao, S., Huang, W., Lu, B., Cai, Z., Zhou, F., Li, M., Lou, T. and Zhao, Y. (2016) Phenylethanoid Glycoside Profiles and Antioxidant Activities of Osmanthus fragrans Lour. Flowers by UPLC/PDA/MS and Simulated Digestion Model. Journal of Agricultural and Food Chemistry, 64, 2459-2466.
https://doi.org/10.1021/acs.jafc.5b03474
[9]  Agbo, M.O., Odimegwu, D.C., Okoye, F.B.C. and Osadebe, P.O. (2017) Antiviral Activity of Salidroside from the Leaves of Nigerian Mistletoe (Loranthus micranthus Linn) Parasitic on Hevea brasiliensis against Respiratory Syncytial Virus. Pakistan Journal of Pharmaceutical Sciences, 30, 1251-1256.
[10]  Tian, X., Huang, Y., Zhang, X., Fang, R., Feng, Y., Zhang, W., Li, L. and Li, T. (2022) Salidroside Attenuates Myocardial Ischemia/Reperfusion Injury via AMPK-Induced Suppression of Endoplasmic Reticulum Stress and Mitochondrial Fission. Toxicology and Applied Pharmacology, 448, Article ID: 116093.
https://doi.org/10.1016/j.taap.2022.116093
[11]  Jiang, S., Fan, F., Yang, L., Chen, K., Sun, Z., Zhang, Y., Cairang, N., Wang, X. and Meng, X. (2022) Salidroside Attenuates High Altitude Hypobaric Hypoxia-Induced Brain Injury in Mice via Inhibiting NF-KappaB/NLRP3 Pathway. European Journal of Pharmacology, 925, Article ID: 175015.
https://doi.org/10.1016/j.ejphar.2022.175015
[12]  Luan, X., Cui, C., Jiang, J., Wang, C., Li, L., Li, H., Xu, C., Li, L., Chi, Y. and Yan, G. (2022) Salidroside Mitigates Airway Inflammation in Asthmatic Mice via the AMPK/Akt/GSK3beta Signaling Pathway. International Archives of Allergy and Immunology, 183, 326-336.
https://doi.org/10.1159/000519295
[13]  Yao, F., Jiang, X., Qiu, L., Peng, Z., Zheng, W., Ding, L. and Xia, X. (2022) Long-Term Oral Administration of Salidroside Alleviates Diabetic Retinopathy in Db/Db Mice. Frontiers in Endocrinology, 13, Article ID: 861452.
https://doi.org/10.3389/fendo.2022.861452
[14]  Han, J., Zhang, J.Z., Zhong, Z.F., Li, Z.F., Pang, W.S., Hu, J. and Chen, L.D. (2018) Gualou Guizhi Decoction Promotes Neurological Functional Recovery and Neurogenesis Following Focal Cerebral Ischemia/Reperfusion. Neural Regeneration Research, 13, 1408-1416.
https://doi.org/10.4103/1673-5374.235296
[15]  Lai, W., Zheng, Z., Zhang, X., Wei, Y., Chu, K., Brown, J., Hong, G. and Chen, L. (2015) Salidroside-Mediated Neuroprotection Is Associated with Induction of Early Growth Response Genes (EGRS) across a Wide Therapeutic Window. Neurotoxicity Research, 28, 108-121.
https://doi.org/10.1007/s12640-015-9529-9
[16]  Wei, Y., Hong, H., Zhang, X., Lai, W., Wang, Y., Chu, K., Brown, J., Hong, G. and Chen, L. (2017) Salidroside Inhibits Inflammation through PI3K/Akt/HIF Signaling after Focal Cerebral Ischemia in Rats. Inflammation, 40, 1297-1309.
https://doi.org/10.1007/s10753-017-0573-x
[17]  Hu, H., Li, Z., Zhu, X., Lin, R. and Chen, L. (2014) Salidroside Reduces Cell Mobility via NF-KappaB and MAPK Signaling in LPS-Induced BV2 Microglial Cells. Evidence-Based Complementary and Alternative Medicine: ECAM, 2014, Article ID: 383821.
https://doi.org/10.1155/2014/383821
[18]  Lai, W., Xie, X., Zhang, X., Wang, Y., Chu, K., Brown, J., Chen, L. and Hong, G. (2018) Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside after Cerebral Ischemia. Inflammation, 41, 449-463.
https://doi.org/10.1007/s10753-017-0701-7
[19]  Liu, X., Wen, S., Yan, F., Liu, K., Liu, L., Wang, L., Zhao, S. and Ji, X. (2018) Salidroside Provides Neuroprotection by Modulating Microglial Polarization after Cerebral Ischemia. Journal of Neuroinflammation, 15, Article No. 39.
https://doi.org/10.1186/s12974-018-1081-0
[20]  Wang, Y., Su, Y., Lai, W., Huang, X., Chu, K., Brown, J. and Hong, G. (2020) Salidroside Restores an Anti-Inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement after Oxidative Stress. Inflammation, 43, 310-325.
https://doi.org/10.1007/s10753-019-01121-y
[21]  Han, J., Xiao, Q., Lin, Y.H., Zheng, Z.Z., He, Z.D., Hu, J. and Chen, L.D. (2015) Neuroprotective Effects of Salidroside on Focal Cerebral Ischemia/Reperfusion Injury Involve the Nuclear Erythroid 2-Related Factor 2 Pathway. Neural Regeneration Research, 10, 1989-1996.
https://doi.org/10.4103/1673-5374.172317
[22]  Zhong, Z.F., Han, J., Zhang, J.Z., Xiao, Q., Chen, J.Y., Zhang, K., Hu, J. and Chen, L.D. (2019) Neuroprotective Effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced Behavioral Impairment Involves the Dopaminergic System. Frontiers in Pharmacology, 10, Article No. 1433.
https://doi.org/10.3389/fphar.2019.01433
[23]  Qu, Z.Q., Zhou, Y., Zeng, Y.S., Lin, Y.K., Li, Y., Zhong, Z.Q. and Chan, W.Y. (2012) Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat. PLOS ONE, 7, E29641.
https://doi.org/10.1371/journal.pone.0029641
[24]  Ha, X.Q., Yang, B., Hou, H.J., Cai, X.L., Xiong, W.Y. and Wei, X.P. (2020) Protective Effect of Rhodioloside and Bone Marrow Mesenchymal Stem Cells Infected with HIF-1-Expressing Adenovirus on Acute Spinal Cord Injury. Neural Regeneration Research, 15, 690-696.
https://doi.org/10.4103/1673-5374.266920
[25]  Zhao, H.B., Ma, H., Ha, X.Q., Zheng, P., Li, X.Y., Zhang, M., Dong, J.Z. and Yang, Y.S. (2014) Salidroside Induces Rat Mesenchymal Stem Cells to Differentiate into Dopaminergic Neurons. Cell Biology International, 38, 462-471.
https://doi.org/10.1002/cbin.10217
[26]  Yan, R., Xu, H. and Fu, X. (2018) Salidroside Protects Hypoxia-Induced Injury by Up-Regulation of MiR-210 in Rat Neural Stem Cells. Biomedicine & Pharmacotherapy, 103, 1490-1497.
https://doi.org/10.1016/j.biopha.2018.04.184
[27]  Zuo, W., Yan, F., Zhang, B., Hu, X. and Mei, D. (2018) Salidroside Improves Brain Ischemic Injury by Activating PI3K/Akt Pathway and Reduces Complications Induced by Delayed TPA Treatment. European Journal of Pharmacology, 830, 128-138.
https://doi.org/10.1016/j.ejphar.2018.04.001
[28]  Chen, T., Ma, Z., Zhu, L., Jiang, W., Wei, T., Zhou, R., Luo, F., Zhang, K., Fu, Q., Ma, C., et al. (2016) Suppressing Receptor-Interacting Protein 140: A New Sight for Salidroside to Treat Cerebral Ischemia. Molecular Neurobiology, 53, 6240-6250.
https://doi.org/10.1007/s12035-015-9521-7
[29]  Coviello, S., Gramuntell, Y., Klimczak, P., Varea, E., Blasco-Ibanez, J.M., Crespo, C., Gutierrez, A. and Nacher, J. (2022) Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Frontiers in Neuroanatomy, 16, Article ID: 851432.
https://doi.org/10.3389/fnana.2022.851432
[30]  Yu, B., Yao, Y., Zhang, X., Ruan, M., Zhang, Z., Xu, L., Liang, T. and Lu, J. (2021) Synergic Neuroprotection between Ligusticum Chuanxiong Hort and Borneol against Ischemic Stroke by Neurogenesis via Modulating Reactive Astrogliosis and Maintaining the Blood-Brain Barrier. Frontiers in Pharmacology, 12, Article ID: 666790.
https://doi.org/10.3389/fphar.2021.666790
[31]  Ding, Z.B., Song, L.J., Wang, Q., Kumar, G., Yan, Y.Q. and Ma, C.G. (2021) Astrocytes: A Double-Edged Sword in Neurodegenerative Diseases. Neural Regeneration Research, 16, 1702-1710.
https://doi.org/10.4103/1673-5374.306064
[32]  Liu, Z., Li, Y., Cui, Y., Roberts, C., Lu, M., Wilhelmsson, U., Pekny, M. and Chopp, M. (2014) Beneficial Effects of Gfap/Vimentin Reactive Astrocytes for Axonal Remodeling and Motor Behavioral Recovery in Mice after Stroke. Glia, 62, 2022-2033.
https://doi.org/10.1002/glia.22723
[33]  Shen, S.W., Duan, C.L., Chen, X.H., Wang, Y.Q., Sun, X., Zhang, Q.W., Cui, H.R. and Sun, F.Y. (2016) Neurogenic Effect of VEGF Is Related to Increase of Astrocytes Transdifferentiation into New Mature Neurons in Rat Brains after Stroke. Neuropharmacology, 108, 451-461.
https://doi.org/10.1016/j.neuropharm.2015.11.012
[34]  Duan, C.L., Liu, C.W., Shen, S.W., Yu, Z., Mo, J.L., Chen, X.H. and Sun, F.Y. (2015) Striatal Astrocytes Transdifferentiate into Functional Mature Neurons Following Ischemic Brain Injury. Glia, 63, 1660-1670.
https://doi.org/10.1002/glia.22837
[35]  Ge, L.J., Yang, F.H., Li, W., Wang, T., Lin, Y., Feng, J., Chen, N.H., Jiang, M., Wang, J.H., Hu, X.T., et al. (2020) In Vivo Neuroregeneration to Treat Ischemic Stroke through NeuroD1 AAV-Based Gene Therapy in Adult Non-Human Primates. Frontiers in Cell and Developmental Biology, 8, Article ID: 590008.
https://doi.org/10.3389/fcell.2020.590008
[36]  Xiong, L.L., Chen, J., Du, R.L., Liu, J., Chen, Y.J., Hawwas, M.A., Zhou, X.F., Wang, T.H., Yang, S.J. and Bai, X. (2021) Brain-Derived Neurotrophic Factor and Its Related Enzymes and Receptors Play Important Roles after Hypoxic-Ischemic Brain Damage. Neural Regeneration Research, 16, 1453-1459.
https://doi.org/10.4103/1673-5374.303033
[37]  Casas, S., Perez, A.F., Mattiazzi, M., Lopez, J., Folgueira, A., Gargiulo-Monachelli, G.M., Gonzalez Deniselle, M.C. and De Nicola, A.F. (2017) Potential Biomarkers with Plasma Cortisol, Brain-Derived Neurotrophic Factor and Nitrites in Patients with Acute Ischemic Stroke. Current Neurovascular Research, 14, 338-346.
https://doi.org/10.2174/1567202614666171005122925
[38]  Yu, K.W., Wang, C.J., Wu, Y., Wang, Y.Y., Wang, N.H., Kuang, S.Y., Liu, G., Xie, H.Y., Jiang, C.Y. and Wu, J.F. (2020) An Enriched Environment Increases the Expression of Fibronectin Type III Domain-Containing Protein 5 and Brain-Derived Neurotrophic Factor in the Cerebral Cortex of the Ischemic Mouse Brain. Neural Regeneration Research, 15, 1671-1677.
https://doi.org/10.4103/1673-5374.276339
[39]  Gao, Y., Ya, B., Li, X., Guo, Y. and Yin, H. (2021) Myricitrin Ameliorates Cognitive Deficits in MCAO Cerebral Stroke Rats via Histone Acetylation-Induced Alterations of Brain-Derived Neurotrophic Factor. Molecular and Cellular Biochemistry, 476, 609-617.
https://doi.org/10.1007/s11010-020-03930-4
[40]  Li, C., Sun, T. and Jiang, C. (2021) Recent Advances in Nanomedicines for the Treatment of Ischemic Stroke. Acta Pharmaceutica Sinica B, 11, 1767-1788.
https://doi.org/10.1016/j.apsb.2020.11.019
[41]  Yang, J., Wu, S., Hou, L., Zhu, D., Yin, S., Yang, G. and Wang, Y. (2020) Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor MRNA and Protein via Exosomes on Cerebral Ischemia. Molecular Therapy Nucleic Acids, 21, 512-522.
https://doi.org/10.1016/j.omtn.2020.06.013
[42]  Cragnolini, A.B., Montenegro, G., Friedman, W.J. and Masco, D.H. (2018) Brain-Region Specific Responses of Astrocytes to an in Vitro Injury and Neurotrophins. Molecular and Cellular Neurosciences, 88, 240-248.
https://doi.org/10.1016/j.mcn.2018.02.007
[43]  Zhang, X., Du, Q., Yang, Y., Wang, J., Liu, Y., Zhao, Z., Zhu, Y. and Liu, C. (2018) Salidroside Alleviates Ischemic Brain Injury in Mice with Ischemic Stroke through Regulating BDNK Mediated PI3K/Akt Pathway. Biochemical Pharmacology, 156, 99-108.
https://doi.org/10.1016/j.bcp.2018.08.015
[44]  Chai, Y., Cai, Y., Fu, Y., Wang, Y., Zhang, Y., Zhang, X., Zhu, L., Miao, M. and Yan, T. (2022) Salidroside Ameliorates Depression by Suppressing NLRP3-Mediated Pyroptosis via P2X7/NF-KappaB/NLRP3 Signaling Pathway. Frontiers in Pharmacology, 13, Article ID: 812362.
https://doi.org/10.3389/fphar.2022.812362
[45]  Liu, H., Lv, P., Zhu, Y., Wu, H., Zhang, K., Xu, F., Zheng, L. and Zhao, J. (2017) Salidroside Promotes Peripheral Nerve Regeneration Based on Tissue Engineering Strategy Using Schwann Cells and PLGA: In Vitro and in Vivo. Scientific Reports, 7, Article No. 39869.
https://doi.org/10.1038/srep39869
[46]  Li, J., Zhang, Y., Yang, Z., Zhang, J., Lin, R. and Luo, D. (2020) Salidroside Promotes Sciatic Nerve Regeneration Following Combined Application Epimysium Conduit and Schwann Cells in Rats. Experimental Biology and Medicine, 245, 522-531.
https://doi.org/10.1177/1535370220906541

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133