|
普鲁士蓝类似物作为钠离子电池正极材料的应用进展
|
Abstract:
目前,锂离子电池被应用在多种储能领域,锂资源的持续消耗导致锂离子电池的成本高昂。由于丰富的钠资源储量以及价格优势,钠离子电池被认为是一类具潜力的新型储能装置。相对于锂离子来说,钠离子较大的离子半径对于电极材料的稳定性存在威胁。普鲁士蓝类似物具有易于调控的骨架结构、简单的合成工艺、较低的成本和环境友好等特点,适合作为钠离子电池正极材料。本文总结了普鲁士蓝类似物的结构与电化学性能之间的关系,并对其作为钠离子电池电极材料的研究方向进行了展望。
Currently, with the application of lithium-ion batteries in a variety of energy storage fields, the continuous depletion of lithium resources and its rising price have led to the high cost of lithium-ion batteries. Sodium-ion batteries are a potential new type of energy storage device due to their abundant sodium resource reserves and price advantages. The larger ionic radius of sodium ions is a threat to the stability of the electrode material in sodium-ion batteries compared to lithium-ion batteries. Prussian blue analogues are a suitable class of materials for sodium-ion battery electrode materials because of their easily regulated backbone structure, simple synthesis process, low cost, and environmental friendliness. In this paper, the relationship between the structure and electrochemical properties of Prussian blue analogues is summarized, and the development direction of them as electrode materials for sodium-ion batteries is prospected.
[1] | Goodenough, J.B. (2018) How We Made the Li-Ion Rechargeable Battery. Nature Electronics, 1, 204. https://doi.org/10.1038/s41928-018-0048-6 |
[2] | Li, Y., Zhao, J., Hu, Q., et al. (2022) Prussian Blue Analogs Cathodes for Aqueous Zinc Ion Batteries. Materials Today Energy, 29, Article 101095. https://doi.org/10.1016/j.mtener.2022.101095 |
[3] | Shu, W., Li, J., Zhang, G., et al. (2024) Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries. Nano-Micro Letters, 16, Article No. 128. https://doi.org/10.1007/s40820-024-01355-y |
[4] | Bors, R., Yun, J., Marzak, P., et al. (2018) Chromium(II) Hexacyanoferrate-Based Thin Films as a Material for Aqueous Alkali Metal Cation Batteries. ACS Omega, 3, 5111-5115. https://doi.org/10.1021/acsomega.8b00273 |
[5] | Liu, Y., Fan, S., Gao, Y., et al. (2023) Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Small, 19, Article 2302687. https://doi.org/10.1002/smll.202302687 |
[6] | Peng, C., Xu, X., Li, F., et al. (2023) Recent Progress of Promising Cathode Candidates for Sodium-Ion Batteries: Current Issues, Strategy, Challenge, and Prospects. Small Structures, 4, Article 2300150. https://doi.org/10.1002/sstr.202300150 |
[7] | Wang, B., Wang, X., Liang, C., et al. (2019) An All-Prussian-Blue-Based Aqueous Sodium-Ion Battery. ChemElectroChem, 6, 4848-4853. https://doi.org/10.1002/celc.201901223 |
[8] | Hwang, J.-Y., Myung, S.-T. and Sun, Y.-K. (2017) Sodium-Ion Batteries: Present and Future. Chemical Society Reviews, 46, 3529-3614. https://doi.org/10.1039/C6CS00776G |
[9] | Delmas, C. (2018) Sodium and Sodium-Ion Batteries: 50 Years of Research. Advanced Energy Materials, 8, Article 1703137. https://doi.org/10.1002/aenm.201703137 |
[10] | Deng, J., Luo, W.-B., Chou, S.-L., et al. (2018) Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 8, Article 1701428. https://doi.org/10.1002/aenm.201701428 |
[11] | He, M., Davis, R., Chartouni, D., et al. (2022) Assessment of the First Commercial Prussian Blue Based Sodium-Ion Battery. Journal of Power Sources, 548, Article 232036. https://doi.org/10.1016/j.jpowsour.2022.232036 |
[12] | Wu, H., Hao, J., Jiang, Y., et al. (2024) Alkaline-Based Aqueous Sodium-Ion Batteries for Large-Scale Energy Storage. Nature Communications, 15, Article No. 575. https://doi.org/10.1038/s41467-024-44855-6 |
[13] | Peters, J., Buchholz, D., Passerini, S., et al. (2016) Life Cycle Assessment of Sodium-Ion Batteries. Energy & Environmental Science, 9, 1744-1751. https://doi.org/10.1039/C6EE00640J |
[14] | Zhou, A., Cheng, W., Wang, W., et al. (2020) Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances toward High-Performance Sodium and Potassium Ion Batteries. Advanced Energy Materials, 11, Article 2000943. https://doi.org/10.1002/aenm.202000943 |
[15] | Wu, X., Ru, Y., Bai, Y., et al. (2022) PBA Composites and Their Derivatives in Energy and Environmental Applications. Coordination Chemistry Reviews, 451, Article 214260. https://doi.org/10.1016/j.ccr.2021.214260 |
[16] | Li, W.-J., Han, C., Cheng, G., et al. (2019) Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 15, Article 1900470. https://doi.org/10.1002/smll.201900470 |
[17] | Song, X., Song, S., Wang, D., et al. (2021) Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Small Methods, 5, Article 2001000. https://doi.org/10.1002/smtd.202001000 |
[18] | Yi, H., Qin, R., Ding, S., et al. (2020) Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications. Advanced Functional Materials, 31, Article 2006970. https://doi.org/10.1002/adfm.202006970 |
[19] | Avila, Y., Acevedo-Pe?a, P., Reguera, L., et al. (2022) Recent Progress in Transition Metal Hexacyanometallates: From Structure to Properties and Functionality. Coordination Chemistry Reviews, 453, Article 214274. https://doi.org/10.1016/j.ccr.2021.214274 |
[20] | Peng, J., Zhang, W., Liu, Q., et al. (2022) Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present and Future. Advanced Materials, 34, Article 2108384. https://doi.org/10.1002/adma.202108384 |
[21] | You, Y., Wu, X.-L., Yin, Y.-X., et al. (2014) High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries. Energy & Environmental Science, 7, 1643-1647. https://doi.org/10.1039/C3EE44004D |
[22] | Neff, V.D. (1978) Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. Journal of the Electrochemical Society, 125, 886. https://doi.org/10.1149/1.2131575 |
[23] | Chen, Z.-Y., Fu, X.-Y., Zhang, L.-L., et al. (2022) High-Performance Fe-Based Prussian Blue Cathode Material for Enhancing the Activity of Low-Spin Fe by Cu Doping. ACS Applied Materials & Interfaces, 14, 5506-5513. https://doi.org/10.1021/acsami.1c23793 |
[24] | Lu, Y., Wang, L., Cheng, J., et al. (2012) Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries. Chemical Communications, 48, 6544-6546. https://doi.org/10.1039/c2cc31777j |
[25] | Xie, B., Sun, B., Gao, T., et al. (2022) Recent Progress of Prussian Blue Analogues as Cathode Materials for Nonaqueous Sodium-Ion Batteries. Coordination Chemistry Reviews, 460, Article 214478. https://doi.org/10.1016/j.ccr.2022.214478 |
[26] | Zhao, J., Wang, J., Bi, R., et al. (2021) General Synthesis of Multiple-Cores@Multiple-Shells Hollow Composites and Their Application to Lithium-Ion Batteries. Angewandte Chemie International Edition, 60, 25719-25722. https://doi.org/10.1002/anie.202110982 |
[27] | Xue, Q., Li, L., Huang, Y., et al. (2019) Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via in situ Polymerization Coating. ACS Applied Materials & Interfaces, 11, 22339-22345. https://doi.org/10.1021/acsami.9b04579 |
[28] | Gao, X., Zheng, Y., Chang, J., et al. (2022) Universal Strategy for Preparing Highly Stable PBA/Ti3C2Tx MXene toward Lithium-Ion Batteries via Chemical Transformation. ACS Applied Materials & Interfaces, 14, 15298-15306. https://doi.org/10.1021/acsami.2c01382 |
[29] | Sun, J., Ye, H., Oh, J.A.S., et al. (2022) Alleviating Mechanical Degradation of Hexacyanoferrate via Strain Locking during Na Insertion/Extraction for Full Sodium Ion Battery. Nano Research, 15, 2123-2129. https://doi.org/10.1007/s12274-021-3844-7 |
[30] | Okubo, M., Li, C.H. and Talham, D.R. (2014) High Rate Sodium Ion Insertion into Core-Shell Nanoparticles of Prussian Blue Analogues. Chemical Communications, 50, 1353-1355. https://doi.org/10.1039/C3CC47607C |
[31] | Peng, J., Gao, Y., Zhang, H., et al. (2022) Ball Milling Solid-State Synthesis of Highly Crystalline Prussian Blue Analogue Na2-XMnFe(CN)6 Cathodes for All-Climate Sodium-Ion Batteries. Angewandte Chemie International Edition, 61, e202205867. https://doi.org/10.1002/anie.202205867 |
[32] | Deng, L., Qu, J., Niu, X., et al. (2021) Defect-Free Potassium Manganese Hexacyanoferrate Cathode Material for High-Performance Potassium-Ion Batteries. Nature Communications, 12, Article No. 2167. https://doi.org/10.1038/s41467-021-22499-0 |
[33] | Jiang, Y., Shen, L., Ma, H., et al. (2022) A Low-Strain Metal Organic Framework for Ultra-Stable and Long-Life Sodium-Ion Batteries. Journal of Power Sources, 541, Article 231701. https://doi.org/10.1016/j.jpowsour.2022.231701 |
[34] | Wang, Z., Huang, Y., Chu, D., et al. (2021) Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. ACS Applied Materials & Interfaces, 13, 38202-38212. https://doi.org/10.1021/acsami.1c06634 |
[35] | Nie, P., Yuan, J., Wang, J., et al. (2017) Prussian Blue Analogue with Fast Kinetics through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 9, 20306-20312. https://doi.org/10.1021/acsami.7b05178 |
[36] | Zhang, L., Meng, T., Mao, B., et al. (2017) Multifunctional Prussian Blue Analogous@Polyaniline Core-Shell Nanocubes for Lithium Storage and Overall Water Splitting. RSC Advances, 7, 50812-50821. https://doi.org/10.1039/C7RA10292E |
[37] | Xu, C., Yang, Z., Zhang, X., et al. (2021) Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Nano-Micro Letters, 13, Article No. 166. https://doi.org/10.1007/s40820-021-00700-9 |
[38] | Wessells, C.D., Peddada, S.V., Huggins, R.A., et al. (2011) Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries. Nano Letters, 11, 5421-5425. https://doi.org/10.1021/nl203193q |
[39] | Shen, L., Jiang, Y., Liu, Y., et al. (2020) High-Stability Monoclinic Nickel Hexacyanoferrate Cathode Materials for Ultrafast Aqueous Sodium Ion Battery. Chemical Engineering Journal, 388, Article 124228. https://doi.org/10.1016/j.cej.2020.124228 |
[40] | Wessells, C.D., Huggins, R.A. and Cui, Y. (2011) Copper Hexacyanoferrate Battery Electrodes with Long Cycle Life and High Power. Nature Communications, 2, Article No. 550. https://doi.org/10.1038/ncomms1563 |
[41] | Lee, J., Baek, J., Kim, Y., et al. (2023) Cu-Substituted Prussian White with Low Crystal Defects as High-Energy Cathode Materials for Sodium-Ion Batteries. Materials Today Chemistry, 33, Article 101741. https://doi.org/10.1016/j.mtchem.2023.101741 |
[42] | Wu, X.-Y., Sun, M.-Y., Shen, Y.-F., et al. (2014) Energetic Aqueous Rechargeable Sodium-Ion Battery Based on Na2CuFe(CN)6-NaTi2(PO4)3 Intercalation Chemistry. ChemSusChem, 7, 407-411. https://doi.org/10.1002/cssc.201301036 |
[43] | Nakamoto, K., Sakamoto, R., Ito, M., et al. (2017) Effect of Concentrated Electrolyte on Aqueous Sodium-Ion Battery with Sodium Manganese Hexacyanoferrate Cathode. Electrochemistry, 85, 179-185. https://doi.org/10.5796/electrochemistry.85.179 |
[44] | Lamprecht, X., Speck, F., Marzak, P., et al. (2022) Electrolyte Effects on the Stabilization of Prussian Blue Analogue Electrodes in Aqueous Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 14, 3515-3525. https://doi.org/10.1021/acsami.1c21219 |