|
Pure Mathematics 2024
具有自由终端时间的多目标最优控制问题可行解的存在性
|
Abstract:
本文主要考虑在欧式空间中,初始状态和终端状态满足约束,具有自由终端时间的多目标最优控 制问题。 通过引入额外的状态与控制,把具有自由终端时间的多目标最优控制问题转变为有限时 间区间的多目标最优控制问题,得到了具有自由终端时间的多目标最优控制问题可行解存在性条件。
In this paper, we mainly consider the multi-objective optimal control problem with
free end time, initial state and terminal state satisfying constraints. By introducing
additional state and control, we transform this problem into a control problem with
fixed end time, we obtain the existence of the feasible solutions for multi-objective
optimal control problem with free end time.
[1] | Kaya, C.Y. and Maurer, H. (2023) Optimization over the Pareto Front of Nonconvex Multiobjective
Optimal Control Problems. arXiv preprint arXiv: 2301.13327
https://doi.org/10.48550/arXiv.2301.13327 |
[2] | Bolzoni, L., Bonacini, E., Della Marca, R. and Groppi, M. (2019) Optimal Control of Epidemic
Size and Duration with Limited Resources. Mathematical Biosciences, 315, Article 108232.
https://doi.org/10.1016/j.mbs.2019.108232 |
[3] | Logist, F., Van Erdeghem, P.M.M. and Van Impe, J.F. (2009) Effcient Deterministic Multiple
Objective Optimal Control of (Bio)Chemical Processes. Chemical Engineering Science, 64,
2527-2538. https://doi.org/10.1016/j.ces.2009.01.054 |
[4] | Vertovec, N., Ober-Blobaum, S. and Margellos, K.(2023) Multi-Objective Low-Thrust Spacecraft
Trajectory Design Using Reachability Analysis. European Journal of Control, 69, Article
100758. https://doi.org/10.1016/j.ejcon.2022.100758 |
[5] | Vertovec, N., Ober-Blobaum, S. and Margellos, K. (2021) Multi-Objective Minimum Time
Optimal Control for Low-Thrust Trajectory Design. 2021 European Control Conference (ECC),
Delft, 29 June-2 July 2021, 1975-1980.
https://doi.org/10.23919/ECC54610.2021.9654919 |
[6] | 袁嘉宁. 多目标优化控制问题可行解的存在性[J]. 理论数学, 2022, 12(1): 97-102. https://doi.org/10.12677/PM.2022.121013 |