全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合多维泰勒网策略优化EKF-SLAM算法一致性的新方法研究
A New Method for Optimizing the Consistency of EKF-SLAM Algorithm Based on Multi-Dimensional Taylor-Net Strategy

DOI: 10.12677/pm.2024.145189, PP. 324-334

Keywords: 多维泰勒网,FEJ,EKF-SLAM,鲁棒性,一致性
Multi-Dimensional Taylor Net
, FEJ, EKF-SLAM, Robustness, Consistency

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在非线性SLAM系统中设计一种改进的EKF-SLAM算法进行状态估计和构建一致性地图。通过引入多维泰勒网和第一估计雅可比矩阵方法,我们提出了一种新颖的估计算法,旨在提高系统的鲁棒性和构建地图的一致性。本研究首先介绍了多维泰勒网的基本原理,数学模型和EKF-SLAM算法的可观性分析,然后详细描述了改进的EKF-SLAM算法的设计和实现过程。我们通过仿真实验验证了该改进算法在非线性SLAM系统中的有效性和优越性,结果表明,该改进算法在对系统状态估计和构建一致地图方面有着很好的效果。
This manuscript aims to design an improved EKF-SLAM algorithm for state estimation and consistency map construction in nonlinear SLAM systems. By introducing multi-dimensional Taylor nets and the first estimate Jacobian matrix method, we propose a novel estimation algorithm aimed at improving the robustness of the system and the consistency of the constructed map. This manuscript first introduces the basic principle of multi-dimensional Taylor net, mathematical model and observability analysis of EKF-SLAM algorithm, and then describes the design and implementation process of improved EKF-SLAM algorithm in detail. The effectiveness and superiority of the improved algorithm in nonlinear SLAM system are verified by simulation experiments. The results show that the improved algorithm has a good effect on the estimation of the system and the construction of a consistent map.

References

[1]  Smith, H. and Cheeseman, L.P. (1986) On the Representation and Estimation of Spatial Uncertainty. The International Journal of Robotics Research, 5, 56-68.
https://doi.org/10.1177/027836498600500404
[2]  Cadena, C., Carlone, L., Carrillo, H., et al. (2016) Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32, 1309-1332.
https://doi.org/10.1109/TRO.2016.2624754
[3]  Fuentes-Pacheco, J., Ruiz-Ascencio, J. and Rendón-Mancha, J.M. (2015) Visual Simultaneous Localization and Mapping: A Survey. Artificial Intelligence Review, 43, 55-81.
https://doi.org/10.1007/s10462-012-9365-8
[4]  Julier, S. and Uhlmann, J. (2001) A Counter Example to the Theory of Simultaneous Localization and Map Building. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, 21-26 May 2001, 4238-4243.
https://doi.org/10.1109/ROBOT.2001.933280
[5]  Bar-Shalom, Y., Li, X.R. and Kirubarajan, T. (2001) Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software. John Wiley & Sons, Inc., Hoboken.
https://doi.org/10.1002/0471221279
[6]  Ayadi, N., Derbel, N., Morette, N., et al. (2018) Simulation and Experimental Evaluation of the EKF Simultaneous Localization and Mapping Algorithm on the Wifibot Mobile Robot. Journal of Artificial Intelligence and Soft Computing Research, 8, 91-101.
https://doi.org/10.1515/jaiscr-2018-0006
[7]  Zhang, F., Li, S.Q., Yuan, S., et al. (2017) Observability Analysis for Improving EKF-SLAM Algorithm by Using Simulation. 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Honolulu, 31 July-4 August 2017, 1009-1014.
https://doi.org/10.1109/CYBER.2017.8446557
[8]  Klan?ar, G., Tesli?, L. and ?krjanc, I. (2014) Mobile-Robot Pose Estimation and Environment Mapping Using an Extended Kalman Filter. International Journal of Systems Science, 45, 2603-2618.
https://doi.org/10.1080/00207721.2013.775379
[9]  Choi, J., Choi, M., Chung, W.K., et al. (2016) Data Association Using Relative Compatibility of Multiple Observations for EKF-SLAM. Intelligent Service Robotics, 9, 177-185.
https://doi.org/10.1007/s11370-016-0200-y
[10]  Bailey, T., Nieto, J., Guivant, J., et al. (2006) Consistency of the EKF-SLAM Algorithm. 2006 IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Beijing, 9-15 October 2006, 3562-3568.
https://doi.org/10.1109/IROS.2006.281644
[11]  Hui-Ping, L., De-Min, X., Zhang, F.B., et al. (2009) Consistency Analysis of EKF-Based SLAM by Measurement Noise and Observation Times. Acta Automatica Sinica, 35, 1177-1184.
https://doi.org/10.3724/SP.J.1004.2009.01177
[12]  Choi, W.S., Kang, J.G. and Oh, S.Y. (2009) Measurement Noise Estimator Assisted Extended Kalman Filter for SLAM Problem. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 10-15 October 2009, 2077-2082.
https://doi.org/10.1109/IROS.2009.5354525
[13]  严洪森. 多维泰勒网优化控制[R]. 南京: 东南大学自动化学院制造系统控制与优化研究所, 2010.
[14]  韩玉群. 随机非线性系统的多维泰勒网控制研究[D]: [博士学位论文]. 南京: 东南大学, 2019.
[15]  周博, 严洪森. 基于小波和多维泰勒网动力学模型的金融时间序列预测[J]. 系统工程理论与实践, 2013, 33(10): 2654-2662.
[16]  莫国端, 刘开第. 函数逼近论方法[M]. 北京: 科学出版社, 2003.
[17]  Huang, G.P., Mourikis, A.I. and Roumeliotis, S.I. (2008) Analysis and Improvement of the Consistency of Extended Kalman Filter-Based SLAM. 2008 IEEE International Conference on Robotics and Automation, Pasadena, 19-23 May 2008, 473-479.
https://doi.org/10.1109/ROBOT.2008.4543252
[18]  Huang, G., Mourikis, A.I. and Roumeliotis, S.I. (2010) Observability-Based Rules for Designing Consistent EKF SLAM Estimators. International Journal of Robotics Research, 29, 502-528.
https://doi.org/10.1177/0278364909353640
[19]  Huang, G., Mourikis, A.I. and Roumeliotis, S.I. (2009) A First-Estimates Jacobian EKF for Improving SLAM Consistency. In: Khatib, O., Kumar, V. and Pappas, G.J., Eds., Experimental Robotics, Springer, Berlin, 373-382.
https://doi.org/10.1007/978-3-642-00196-3_43
[20]  姜晓燕. 基于粒子滤波和一致性分析的同时定位与地图构建算法研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133