|
Pure Mathematics 2024
基于特殊幂级数的双曲完备极小曲面研究
|
Abstract:
在双曲完备极小曲面及Hadamard缺项幂级数的研究背景下,以Brito构造?3中位于两个平行平面间完备极小曲面族的方法为基础,利用Holder不等式、Cauchy-Schwarz不等式对拆分成多项的|Ck|进行放缩,比较不同不等式的放缩效果,使得|Ck|尽可能小,从而使得h(z)适用条件扩大,且找到在某个范围条件下的双曲完备极小曲面族,丰富相关实例。
In the context of the study on hyperbolic complete minimal surfaces and power series with Hadamard gaps, based on the method of Brito’s construction of a family of complete minimal surfaces between two parallel planes in?3, we use Holder inequality and Cauchy-Schwarz inequality to scale the|Ck|which is splited into multiple terms, and compare the scale effects of the different inequalities to make the|Ck|as small as possible, to make the applicable conditions ofh(z)wider. And families of hyperbolic complete minimal surfaces are found under a range of conditions, enriching the relevant examples.
[1] | Calabi, E. (1966) Problems in Differential Geometry. Proceedings of the United States-Japan Seminar in Differential Geometry, Nippon Hyoron-Sha, Tokyo, 170. |
[2] | Jorge, L. and Xavier, F. (1980) A Complete Minimal Surface in between Two Parallel Planes. Annals of Mathematics, 112, 203-206. https://doi.org/10.2307/1971325 |
[3] | Nadirashvili, N. (2001) An Application of Potential Analysis to Minimal Surfaces. Moscow Mathematical Journal, 1, 601-604. https://doi.org/10.17323/1609-4514-2001-1-4-601-604 |
[4] | De Brito, F. (1992) Power Series with Hadamard Gaps and Hyperbolic Complete Minimal Surfaces. Duke Mathematical Journal, 68, 297-300. https://doi.org/10.1215/S0012-7094-92-06812-8 |
[5] | Xavier, F., 潮小李. 现代极小曲面讲义[M]. 北京: 高等教育出版社, 2011. |
[6] | Kokubu, M. (1997) Weierstrass Representation for Minimal Surfaces in Hyperbolic Space. Tohoku Mathematical Journal, Second Series, 49, 367-377. https://doi.org/10.2748/tmj/1178225110 |
[7] | 张建肖, 刘晓俊. Hadamard缺项幂级数及双曲完备极小曲面[J]. 上海理工大学学报, 2022, 44(4): 364-367. |
[8] | 孙道椿. 缺项及随机级数的边界性质[J]. 武汉大学学报(自然科学版), 1991(1): 7-10. |
[9] | Barbosa, J. and Colares, A.G. (1986) Minimal Surfaces in . Lecture Notes in Mathematics, Vol. 1195. https://doi.org/10.1007/BFb0077105 |
[10] | Osserman, R. (1969) A Survey of Minimal Surfaces. Van Nostrand-Reinhold, New York. |
[11] | Pinelis, I. (2015) On the Holder and Cauchy-Schwarz Inequalities. The American Mathematical Monthly, 122, 593-595. https://doi.org/10.4169/amer.math.monthly.122.6.593 |