|
基于Bi-LSTM模型的短时交通量多步预测研究
|
Abstract:
多数短时交通量的预测研究仅集中在单步预测上,并且预测时长不足,为使得交通管理与控制等措施发挥更好的效果,提高短时交通量多步预测精度,最大限度提高交通管理决策和出行决策合理性,本文提出一种基于Bi-LSTM模型进行短时交通量多步预测。首先利用Bi-LSTM模型进行单步预测,将得到的预测值与原始值替换,通过递归迭代进行五步的多步长预测。根据本文研究结果表明:Bi-LSTM模型在多步预测中具有一定优势,相比于ARIMA模型和BP神经网络模型,其平均多步RMSE、MAE、MAPE、RMSRE分别降低了11.1085和9.4134、9.7884和7.2474、26.52%和14.91%、25.01%和14.95%。最后得出,Bi-LSTM在交通量多步预测上具有较大优势。
Most short-term traffic volume forecasting studies only focus on single-step forecasting, and the forecasting time is insufficient. In order to make traffic management and control measures play a better role, improve the accuracy of multi-step forecasting of short-term traffic volume, and maximize the rationality of traffic management decision-making and travel decision-making, this paper proposes a multi-step forecasting of short-term traffic volume based on Bi-LSTM model. Firstly, Bi-LSTM model is used for single step prediction, the predicted value is replaced with the original value, and the five-step multi-step prediction is carried out by recursive iteration. According to the results of this study, Bi-LSTM model has certain advantages in multi-step prediction. Compared with ARIMA model and BP neural network model, The average multi-step RMSE, MAE, MAPE and RMSRE decreased by 11.1085 and 9.4134, 9.7884 and 7.2474, 26.52% and 14.91%, 25.01% and 14.95%, respectively. Finally, it is concluded that Bi-LSTM has a great advantage in multi-step traffic volume prediction.
[1] | Chen, H. and Grant-Muller, S. (2001) Use of Sequential Learning for Short-Term Traffic Flow Forecasting. Transportation Research Part C, 9, 319-336. https://doi.org/10.1016/S0968-090X(00)00039-5 |
[2] | 赵娜, 袁家斌, 徐晗. 智能交通系统综述[J]. 计算机科学, 2014, 41(11): 7-11 45. |
[3] | 贺国光, 李宇, 马寿峰. 基于数学模型的短时交通流预测方法探讨[J]. 系统工程理论与实践, 2000(12): 51-56. |
[4] | 马寿峰, 贺国光, 刘豹. 智能交通系统中短时交通流预测系统的研究[J]. 预测, 2004(2): 28-34. |
[5] | Kalchbrenner, N., Danihelka, I. and Graves, A. (2015) Grid Long Short-Term Memory. https://doi.org/10.48550/arXiv.1507.01526 |
[6] | 肖红军. 数据驱动的污水处理过程故障诊断与多步预测[D]: [博士学位论文]. 广州: 华南理工大学, 2017. |
[7] | 顾溢. 基于BiLSTM-CRF的复杂中文命名实体识别研究[D]: [硕士学位论文]. 南京: 南京大学, 2019. |
[8] | 王子牛, 姜猛, 高建瓴, 等. 基于BERT的中文命名实体识别方法[J]. 计算机科学, 2019, 46(S2): 138-142. |
[9] | 孙弋, 梁兵涛. 基于BERT和多头注意力的中文命名实体识别方法[J]. 重庆邮电大学学报(自然科学版), 2023, 35(1): 110-118. |
[10] | 陈波. 基于随机森林和LSTM的河流溶解氧多步预测研究[D]: [硕士学位论文]. 常州: 常州大学, 2023. https://doi.org/10.27739/d.cnki.gjsgy.2022.000323 |
[11] | 韩玉银. 基于PSO-BiLSTM的船舶轨迹预测研究[D]: [硕士学位论文]. 舟山: 浙江海洋大学, 2024. |
[12] | 袁方, 舒勤, 戴元. 道路交通流多步预测流量控制建模研究[J]. 计算机仿真, 2016, 33(11): 152-156. |
[13] | 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6 26. |
[14] | 韩超, 宋苏, 王成红. 基于ARIMA模型的短时交通流实时自适应预测[J]. 系统仿真学报, 2004(7): 1530-1532 1535. |
[15] | 曹虹. 基于BP神经网络的交通流量预测[D]: [硕士学位论文]. 西安: 长安大学, 2012. |
[16] | 李志超, 刘升. 基于ARIMA模型、灰色模型和回归模型的预测比较[J]. 统计与决策, 2019, 35(23): 38-41. https://doi.org/10.13546/j.cnki.tjyjc.2019.23.007 |
[17] | 李朝静, 唐幼纯, 黄霞. BP神经网络的应用综述[J]. 劳动保障世界(理论版), 2012(8): 71-74. |