全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

降膜蒸发式冷却器传热性能模拟分析
Simulation Analysis of Heat Transfer Performance of Falling Film Evaporative Cooler

DOI: 10.12677/mos.2024.133290, PP. 3165-3180

Keywords: 降膜蒸发,液膜厚度,热质传递,数值模拟
Falling Film Evaporation
, Thickness of Liquid Film, Heat and Mass Transfer, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究降膜蒸发式冷却器的传热性能,通过仿真和实验相结合,探究了呈叉排排列的水平管在不同喷淋密度和迎面风速下的降膜流动和热质传递。结果表明:在周向上,液膜厚度先变小后变大,最薄区域位于周向角90?~110?内;迎面风速的增大对水平管下半部分的液膜厚度影响较大。局部传热系数随喷淋密度和迎面风速的增大而增大,在周向角0?~20?内,局部传热系数迅速减小,而在160?~180?范围内,局部传热系数出现回升。迎面风速和喷淋密度的增大,可以提高水平管外液膜的热质传递效果,并存在最佳喷淋密度0.092 kg?m?1?s?1。工况范围内汽化换热量占总换热量的比值为0.73~0.79,且随迎面风速的增大而下降。
In order to study the heat transfer performance of falling film evaporative cooler, the falling film flow and heat and mass transfer of horizontal pipe arranged in a fork at different spray density and head-on wind velocity were investigated by combining simulation and experiment. The results show that in the circumferential direction, the thickness of liquid film decreases first and then increases, and the thinnest region is within 90?~110? of the circumferential Angle. The increase of head-on wind velocity has a great influence on the liquid film thickness of the lower part of the horizontal pipe. The local heat transfer coefficient increases with the increase of spray density and head-on wind velocity, and it decreases rapidly in the circumferential angle of 0°20°, while it rebounds in the range of 160?~180?. The increase of head-on wind velocity and spray density can improve the heat and mass transfer effect of the liquid film outside the horizontal pipe, and there is optimal spray density of 0.092 kg?m?1?s?1. The ratio of vaporization heat transfer to total heat transfer is 0.73~0.79, and decreases with the increase of head-on wind velocity.

References

[1]  李雪玲, 朱冬生, 郑伟业, 等. 非饱和蒸发式冷却器传热性能实验研究[J]. 制冷学报, 2011, 32(4): 58-62.
[2]  谢敬茹, 黄翔, 寇凡. 2020中国制冷展之蒸发冷却(凝)技术的应用现状分析[J]. 制冷与空调, 2021, 21(1): 7-13.
[3]  张旭, 涂淑平, 孙文哲. 蒸发式冷凝器的研究及应用进展[J]. 应用化工, 2019, 48(5): 1178-1180, 1185.
[4]  Sajjad, U., Abbas, N., Hamid, K., et al. (2021) A Review of Recent Advances in Indirect Evaporative Cooling Technology. International Communications in Heat and Mass Transfer, 122, 105-140.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105140
[5]  郭亚丽, 李爽, 周宇航, 等. 横管降膜蒸发过程中喷淋密度对传热系数影响的数值研究[J]. 工程热物理学报, 2020, 41(10): 2571-2579.
[6]  李强, 蒲亮, 邵翔宇, 等. 水平管降膜蒸发换热特性的模拟研究[J]. 太阳能学报, 2020, 41(6): 341-347.
[7]  Lee, Y.T., Hong, S.H., Dang, C.B., et al. (2019) Effect of Counter Current Airflow on Film Dispersion and Heat Transfer of Evaporative Falling Film over a Horizontal Elliptical Tube. International Journal of Heat and Mass Transfer, 141, 964-973.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.029
[8]  阚翠玲, 贺滔. 蒸发式冷却器热质传递性能研究[J]. 制造业自动化, 2022, 44(12): 143-146.
[9]  司春强, 张川. 蒸发式冷凝器实验研究与性能分析[J]. 冷藏技术, 2019, 42(1): 14-17.
[10]  朱冬生, 沈家龙, 蒋翔, 等. 蒸发式冷凝器性能研究及强化[J]. 制冷学报, 2006(3): 45-49.
[11]  杨永安, 宣朝辉, 王飞飞. 迎面风速和喷淋密度对蒸发式冷凝机组的影响[J]. 工程热物理学报, 2020, 41(7): 1751-1756.
[12]  申江, 路坤仑, 刘丽, 等. 蒸发式冷凝器单位传热面积最佳风量水量配比研究[J]. 制冷学报, 2014(5): 44-48.
[13]  何茂刚, 王小飞, 张颖. 制冷用水平管降膜蒸发器的研究进展及新技术[J]. 化工学报, 2008, 59(S2): 23-28.
[14]  Hasan, A. and Siren, K. (2004) Performance Investigation of Plain Circular and Oval Tube Evaporatively Cooled Heat Exchangers. Applied Thermal Engineering, 24, 777-790.
https://doi.org/10.1016/j.applthermaleng.2003.10.022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133