全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于低轨卫星网络的遥感卫星任务计算卸载策略
Computation Offloading Strategy for Remote Sensing Satellite Tasks Based on Low-Orbit Satellites Network

DOI: 10.12677/mos.2024.133286, PP. 3130-3138

Keywords: 低轨卫星,遥感卫星任务,深度强化学习,计算卸载
Low-Orbit Satellite
, Remote Sensing Satellite Tasks, Deep Reinforcement Learning, Computation Offloading

Full-Text   Cite this paper   Add to My Lib

Abstract:

在低轨卫星上部署边缘服务器,可以将遥感卫星产生的遥感卫星任务在靠近边缘端进行处理,减少了任务传输时延的同时,极大的缓解了遥感卫星的计算压力。然而,由于低轨卫星自身能源有限,过度使用能源可能会缩短其寿命。此外,当大量遥感卫星任务产生时,计算资源遭遇短缺,从而增加了任务处理的延迟。因此,针对上述问题,提出了一种基于Dueling DQN的遥感卫星任务计算卸载策略,该策略可以充分利用低轨卫星的计算资源,并最大程度上减少任务处理能源消耗。最后,大量仿真结果表明,与其他卸载方法相比,所提策略能有效降低系统任务处理的平均能耗。
Deploying edge servers on low-orbit satellites enables the processing of remote sensing tasks produced by remote sensing satellites at the edge end. It not only reduces task transmission delay but also significantly alleviates the computational pressure on the remote sensing satellites. However, the limited energy of low-orbit satellites presents a challenge, as excessive energy use may shorten their lifespan. Further, the occurrence of many remote sensing tasks could lead to a shortage of computational resources, consequently increasing task processing delay. To address these issues, we propose a remote sensing task computation offloading strategy based on Dueling DQN. This strategy maximizes the utilization of computational resources on low-orbit satellites and minimizes energy consumption. Ultimately, extensive simulation results indicate that compared with other offloading methods, the proposed strategy effectively reduces the system's average energy consumption for task processing.

References

[1]  Zheng, S., Dai, H., Wang, G., et al. (2021) Application of Transportation Superiority in Beijing-Tianjin-Hebei Region Based on High-Resolution Satellite Remote Sensing Data. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, 11-16 July 2021, 6964-6967.
https://doi.org/10.1109/IGARSS47720.2021.9553058
[2]  Zhang, W., Wang, G., Qi, J., et al. (2021) Research on the Extraction of Wind Turbine All over the China Based on Domestic Satellite Remote Sensing Data. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, 11-16 July 2021, 4167-4170.
https://doi.org/10.1109/IGARSS47720.2021.9553559
[3]  Zheng, J., Cai, Y., Wu, Y. and Shen, X. (2019) Dynamic Computation Offloading for Mobile Cloud Computing: A Stochastic Game-Theoretic Approach. IEEE Transactions on Mobile Computing, 18, 771-786.
https://doi.org/10.1109/TMC.2018.2847337
[4]  Hao, Y., Chen, M., Hu, L., Hossain, M.S. and Ghoneim, A. (2018) Energy Efficient Task Caching and Offloading for Mobile Edge Computing. IEEE Access, 6, 11365-11373.
https://doi.org/10.1109/ACCESS.2018.2805798
[5]  Yu, S., Langar, R., Fu, X., Wang, L., and Han, Z. (2018) Computation Offloading with Data Caching Enhancement for Mobile Edge Computing. IEEE Transactions on Vehicular Technology, 67, 11098-11112.
https://doi.org/10.1109/TVT.2018.2869144
[6]  Zheng, C., Wang, J., Ma, A., et al. (2022) Autolc: Search Lightweight and Top-Performing Architecture for Remote Sensing Image Land-Cover Classification. 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, 21-25 August 2022, 324-330.
https://doi.org/10.1109/ICPR56361.2022.9956372
[7]  周恒, 李丽君, 董增寿. 基于异步奖励深度确定性策略梯度的边缘计算多任务资源联合优化[J]. 计算机应用研究, 2023, 40(5): 1491-1496.
[8]  Wang, C., Zhang, Y., Li, Q., et al. (2023) Satellite Computing: A Case Study of Cloud-Native Satellites. 2023 IEEE International Conference on Edge Computing and Communications (EDGE), Chicago, 2-8 July 2023, 262-270.
https://doi.org/10.1109/EDGE60047.2023.00048
[9]  张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269.
[10]  Xing, R., Xu, M., Zhou, A., et al. (2024) Deciphering the Enigma of Satellite Computing with Cots Devices: Measurement and Analysis. arXiv preprint arXiv: 2401.03435.
[11]  Xu, X., Zhao, H., Liu, C., et al. (2021) On the Aggregated Resource Management for Satellite Edge Computing. ICC 2021-IEEE International Conference on Communications, Montreal, 14-23 June 2021, 1-6.
https://doi.org/10.1109/ICC42927.2021.9500539
[12]  Wang, R., Zhu, W., Liu, G., et al. (2022) Collaborative Computation Offloading and Resource Allocation in Satellite Edge Computing. GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, 4-8 December 2022, 5625-5630.
https://doi.org/10.1109/GLOBECOM48099.2022.10000770
[13]  Cheng, W., Liu, X., Wang, X., et al. (2022) Task Offloading and Resource Allocation for Industrial Internet of Things: A Double-Dueling Deep Q-Network Approach. IEEE Access, 10, 103111-103120.
https://doi.org/10.1109/ACCESS.2022.3210248

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133