|
β-罗勒烯对烟蚜种群的防控效果
|
Abstract:
为了探究β-罗勒烯对烟田烟蚜种群的控制效果及最佳施用浓度,在室内条件下分析了不同浓度β-罗勒烯对烟蚜种群数量、种群增长率、干扰作用控制指数以及趋避效果的影响。通过田间药效试验分析了β-罗勒烯及70%吡虫啉水分散粒剂对烟蚜种群数量的影响。室内试验结果表明,10 mM β-罗勒烯对烟蚜种群控制效果最佳,相较于对照,施用β-罗勒烯后12 d每株烤烟上烟蚜密度减少81.7头/株。田间药效试验结果表明,β-罗勒烯能有效抑制田间烟蚜种群数量,综合效果优于化学农药。进一步的RT-qPCR分析结果表明,β-罗勒烯处理能显著提高烤烟植株中水杨酸途径指示基因PR1和茉莉酸/乙烯途径指示基因PDF1.2的表达量,这些说明β-罗勒烯能通过同时激活多条防御途径以促进烤烟植株对烟蚜的防御能力。研究结果表明10 mM β-罗勒烯可用于对烟田烟蚜的控制,本研究为烟田绿色防控烟蚜提供了新的途径。
To investigate β-ocimene control effect and optimal application concentration of β-ocimene on the population of Myzus persicae, we investigated the impact of different concentrations of β-ocimene on the population size, population growth rate, repellency rate, and disturbance control index on Myzus persicae was analyzed under laboratory conditions. Under field conditions β-ocimene on the population quantity of Myzus persicae and its impact on the agronomic traits of flue-cured tobacco under the control of β-ocimene. The results are as follows: Through indoor experiments study 10 mM β-ocimene has the best control effect on the Myzus persicae population. Within 12 days, the number of adults decreased by 81.7 heads/plant compared to the control group. The results of the field experiment: Compared to the control β-ocimene can effectively inhibit the population of Myzus persicae in the field. The RT-qPCR analysis results indicate that, β-ocimene treatment with β-ocimene, the expression levels of the salicylic acid pathway marker gene PR1 and the jasmonic acid/ethylene pathway marker gene PDF1.2 in flue-cured tobacco plants were significantly increased, indicating that β-ocimene can promote the defense ability of flue-cured tobacco plants against Myzus persicae by simultaneously activating multiple defense pathways. The research results indicate that 10 mM β-ocimene can be used for controlling Myzus persicae in tobacco fields, our study provides new insights for the prevention and control of Myzus persicae in the field.
[1] | 王凤龙, 周义和, 任广伟. 中国烟草昆虫图鉴[M]. 北京: 中国农业出版社, 2018. |
[2] | Brault, V., Uzest, M., Monsion, B., et al. (2010) Aphids as Transport Devices for Plant Virous. Comptes Rendus Biologies, 333, 524-538. https://doi.org/10.1016/j.crvi.2010.04.001 |
[3] | 马亚玲, 刘长仲. 蚜虫的生态学特性及其防治[J]. 草业科学, 2014, 31(3): 519-525. |
[4] | 娄芳, 朱文平, 赵小燕, 等. 烟草蚜虫危害及防治措施[J]. 植物医生, 2003, 16(5): 9-10. |
[5] | 刘保才, 王俊琪, 孙国语. 蔬菜病虫害化学防治中的3R问题与科学使用农药[J]. 上海蔬菜, 2004(6): 68-69. |
[6] | 屠豫钦. 有害生物化学农药防治与农药的科学使用技术问题[J]. 中国烟草科学, 2003, 9(z1): 71-78, 82. |
[7] | 高正良, 钱玉梅. 烟田主要害虫时空动态与化学防治[J]. 安徽烟草科技, 1994(4): 337-339. |
[8] | Dicke, M. and Bruin, J. (2001) Chemical Information Transfer between Wounded and Unwounded Plants. Biochemical Systematics and Ecology, 29, 1103-1113. https://doi.org/10.1016/S0305-1978(01)00053-9 |
[9] | Dicke, M., Sabelis, M.W., Takabayashi, J., et al. (1990) Plant Strategies of Manipulating Predat or-Prey Interactions through Allelochemicals: Prospects for Application in Pest Control. Journal of Chemical Ecology, 16, 3091-3118. https://doi.org/10.1007/BF00979614 |
[10] | Arimuri, G., Ozawa, R., Nishioka, T., et al. (2002) Herbivore-Induced Volatiles Induce the Emission of Ethylene in Neighboring Lima Bean Plants. The Plant Journal, 29, 87-98. https://doi.org/10.1046/j.1365-313x.2002.01198.x |
[11] | Nalam, V., Louis, J. and Shah, J. (2019) Plant Defense against Aphids, the Pest Extraordinaire. Plant Science, 279, 96-107. https://doi.org/10.1016/j.plantsci.2018.04.027 |
[12] | Kishimoto, K., Matsui, K., Ozawa, R., et al. (2006) Analysis of Defensive Responses Activated by Volatile allo-Ocimene Treatment in Arabidopsis thaliana. Phytochemistry, 67, 1520-1529. https://doi.org/10.1016/j.phytochem.2006.05.027 |
[13] | Kessler, A. and Baldwin, I.T. (2001) Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science, 291, 2141-2144. https://doi.org/10.1126/science.291.5511.2141 |
[14] | Kang, Z.W., Liu, F.H., Zhang, Z.F., et al. (2018) Volatile β-Ocimene Can Regulate Developmental Performance of Peach Aphid Myzus persicae through Activation of Defense Responses in Chinese Cabbage Brassica pekinensis. Frontiers in Plant Science, 9, Article 708. https://doi.org/10.3389/fpls.2018.00708 |
[15] | 桂茜. 罗勒烯促进植物抗虫分子机制的初步研究[D]: [硕士学位论文]. 长沙: 湖南农业大学, 2017. |
[16] | Kishimoto, K., Matsui, K., Ozawa, R., et al. (2005) Volatile C6-Aldehydes and allo-Ocimene Activate Defense Genes and Induce Resistance against Botrytis cinerea in Arabidopsis thaliana. Plant and Cell Physiology, 46, 1093-1102. https://doi.org/10.1093/pcp/pci122 |
[17] | 刘梅, 张昌容, 班菲雪, 等. 南方小花蝽-蚕豆-蚕豆蚜载体植物系统对茶叶害虫的控制效果[J]. 中国生物防治学报, 2021, 37(5): 936-945. |
[18] | 覃韧, 李戎, 潘应拿, 等. 烟蚜茧蜂对草莓蚜虫的控制效果[J]. 西南师范大学学报(自然科学版), 2020, 45(10): 49-54. |
[19] | 晁文娣, 吕昭智, 赵莉, 等. 七星瓢虫对不同初始密度棉蚜种群的调控作用[J]. 环境昆虫学报, 2021, 43(1): 206-213. |
[20] | 徐长宝, 谢戈亮, 柯伟政, 等. 矿物油对茶园小贯小绿叶蝉的控制效果和对茶叶感官品质的影响[J]. 环境昆虫学报, 2020, 42(4): 1010-1018. |
[21] | 庞雄飞, 张茂新, 侯有明, 等. 植物保护剂防治害虫效果的评价方法[J]. 应用生态学报, 2000, 11(1): 108-110. |
[22] | 胡佳, 曾文婕, 刘春林. 叶片中GUS染色观测油体含量技术体系的建立[J]. 植物生理学报, 2017, 53(2): 185-190. |
[23] | Liu, C.L., Ruan, Y., Guan, C.Y., et al. (2004) β-Ocimene Gene Expression Pattern Induced by Ocimene Signaling Molecule. Science Bulletin, 2004, 2643-2644. |
[24] | Shonle, I. and Bergelson, J. (1995) Interplant Communication Revisited. Ecology, 76, 2660-2663. https://doi.org/10.2307/2265837 |
[25] | Reymond, P. (2013) Perception, Signaling and Molecular Basis of Oviposition-Mediated Plant Responses. Planta, 238, 247-258. https://doi.org/10.1007/s00425-013-1908-y |