全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Objective Model Selection in Physics: Exploring the Finite Information Quantity Approach

DOI: 10.4236/jamp.2024.125115, PP. 1848-1889

Keywords: Comparative Uncertainty, Finite Information Quantity, Formulating a Model, Measurement Accuracy Limit, Objective Model Selection

Full-Text   Cite this paper   Add to My Lib

Abstract:

Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Information Quantity (FIQ) approach offers a novel solution by acknowledging the inherent limitations in information processing capacity of physical systems. This framework facilitates the development of objective criteria for model selection (comparative uncertainty) and paves the way for a more comprehensive understanding of phenomena through exploring diverse explanations. This work presents a detailed comparison of the FIQ approach with ten established model selection methods, highlighting the advantages and limitations of each. We demonstrate the potential of FIQ to enhance the objectivity and robustness of scientific inquiry through three practical examples: selecting appropriate models for measuring fundamental constants, sound velocity, and underwater electrical discharges. Further research is warranted to explore the full applicability of FIQ across various scientific disciplines.

References

[1]  Menin, B. (2017) Information Approach for Calculating the Resolutions of Energy, Length and Information. Journal of Multidisciplinary Engineering Science and Technology, 4, 6859-6862.
https://www.jmest.org/wp-content/uploads/JMESTN42352095.pdf
[2]  Li, Y., Yang, B., Yang, N. and Wang, T. (2019) Application of Interpretable Machine Learning Models for the Intelligent Decision. Neurocomputing, 333, 273-283.
https://doi.org/10.1016/j.neucom.2018.12.012
[3]  Humphries, G., Magness, D.R. and Huettmann, F. (2018) Machine Learning for Ecology and Sustainable Natural Resource Management. Springer, Cham.
https://doi.org/10.1007/978-3-319-96978-7
[4]  Fehrman, B., Gess, B. and Jentzen, A. (2020) Convergence Rates for the Stochastic Gradient Descent Method for Non-Convex Objective Functions. Journal of Machine Learning Research, 21, 1-48.
https://www.jmlr.org/papers/volume21/19-636/19-636.pdf
[5]  Shi, H., Zhang, X., Gao, Y., Wang, S. and Ning, Y. (2023) Robust Total Least Squares Estimation Method for Uncertain Linear Regression Model. Mathematics, 11, Article 4354.
https://doi.org/10.3390/math11204354
[6]  Rolnick, D., et al. (2022) Tackling Climate Change with Machine Learning. ACM Computing Surveys (CSUR), 55, Article 42.
https://dl.acm.org/doi/pdf/10.1145/3485128
[7]  De Baets, N.B. and Waegeman, W. (2023) Conditional Validity of Heteroskedastic Conformal Regression. 1-31.
https://arxiv.org/pdf/2309.08313
[8]  Sirimongkolkasem, T. and Drikvandi, R. (2019) On Regularization Methods for Analysis of High Dimensional Data. Annals of Data Science, 6, 737-763.
https://doi.org/10.1007/s40745-019-00209-4
[9]  Liu, M., et al. (2022) Handling Missing Values in Healthcare Data: A Systematic Review of Deep Learning-Based Imputation Techniques. 1-34.
https://arxiv.org/ftp/arxiv/papers/2210/2210.08258.pdf
[10]  Van der Vaart, A.W. (2000) Asymptotic Statistics. Cambridge University Press.
https://assets.cambridge.org/97805214/96032/frontmatter/9780521496032_frontmatter.pdf
[11]  Lehmann, E.L. and Casella, G. (2015) Theory of Point Estimation. Springer, Berlin.
[12]  Casella, G. and Berger, R.L. (2002) Statistical Inference. Duxbury Press.
https://www.academia.edu/34751941/Casella_berger_statistical_inference
[13]  Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2014) Bayesian Data Analysis. Chapman and Hall/CRC, New York.
https://doi.org/10.1201/b16018
[14]  Murphy, K.P. (2012) Machine Learning: A Probabilistic Perspective. MIT Press.
https://www.academia.edu/35856835/Machine_Learning_A_Probabilistic_Perspective
[15]  Varin, C., Reid, N. and Firth, D. (2011) An Overview of Composite Likelihood Methods. Statistica Sinica, 21, 5-42.
https://www3.stat.sinica.edu.tw/statistica/oldpdf/A21n11.pdf
[16]  Nocedal, J. and Wright, S.J. (2006) Numerical Optimization, 2nd Edition, Springer.
https://www.math.uci.edu/~qnie/Publications/NumericalOptimization.pdf
[17]  Betancourt, M. (2017) A Conceptual Introduction to Stochastic Gradient Methods.
https://arxiv.org/pdf/1701.02434
[18]  Hjort, K., et al. (2018) Open Problems in Likelihood and Bayesian Inference. International Statistical Review, 86, 219-252.
https://link.springer.com/book/10.1007/978-3-662-60792-3
[19]  Li, J., Wang, Z., Li, R. and Wu, R. (2015) Bayesian Group Lasso for Nonparametric Varying-Coefficient Models with Application to Functional Genome-Wide Association Studies. The Annals of Applied Statistics, 9, 640-664.
https://www.jstor.org/stable/24522596
[20]  Chowdhury, S., Uddin, G., Hemmati, H. and Holmes, R. (2024) Method-Level Bug Prediction: Problems and Promises. ACM Transactions on Software Engineering and Methodology, 33, Article No. 98.
https://doi.org/10.1145/3640331
[21]  Villaverde, A.F., Bongard, S., Mauch, K., Müller, D., Balsa-Canto, E., Schmid, J. and Banga, J.R. (2015) A Consensus Approach for Estimating the Predictive Accuracy of Dynamic Models in Biology. Computer Methods and Programs in Biomedicine, 119, 17-28.
https://doi.org/10.1016/j.cmpb.2015.02.001
[22]  Wolf, B.J., Jiang, Y., Wilson, S.H. and Oates, J.C. (2021) Variable Selection Methods for Identifying Predictor Interactions in Data with Repeatedly Measured Binary Outcomes. Journal of Clinical and Translational Science, 5, e59.
https://doi.org/10.1017/cts.2020.556
[23]  Fay, D.S. and Gerow, K. (2013) A Biologist’s Guide to Statistical Thinking and Analysis. WormBook.
http://www.wormbook.org
https://doi.org/10.1895/wormbook.1.159.1
[24]  Barbierato, E. and Gatti, A. (2024) The Challenges of Machine Learning: A Critical Review. Electronics, 13, Article 416.
https://doi.org/10.3390/electronics13020416
[25]  Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012) Introduction to Linear Regression Analysis. 5th Edition.
https://ocd.lcwu.edu.pk/cfiles/Statistics/Stat-503/IntroductiontoLinearRegressionAnalysisbyDouglasC.MontgomeryElizabethA.PeckG.GeoffreyViningz-lib.org.pdf
[26]  Jarantow, S.W., Pisors, E.D. and Chiu, M.L. (2023) Introduction to the Use of Linear and Nonlinear Regression Analysis in Quantitative Biological Assays. Current Protocols, 3, e801.
https://doi.org/10.1002/cpz1.801
[27]  Mikkola, P., Martin, O.A., Chandramouli, S., et al. (2023) Prior Knowledge Elicitation: The Past, Present, and Future. Bayesian Analysis, Advance Publication, 1-33.
https://doi.org/10.1214/23-BA1381
[28]  Ferianc, M., Maji, P., Mattina, M. and Rodrigues, M. (2021) On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks. Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021), Proceedings of Machine Learning Research, 161, 929-938.
https://proceedings.mlr.press/v161/ferianc21a/ferianc21a.pdf
[29]  Glasauer, S. (2019) Chapter 1—Sequential Bayesian Updating as a Model for Human Perception. Progress in Brain Research, 249, 3-18.
https://sci-hub.se/
https://doi.org/10.1016/bs.pbr.2019.04.025
https://doi.org/10.1016/bs.pbr.2019.04.025
[30]  Alstona, C., et al. (2005) Bayesian Model Comparison: Review and Discussion. International Statistical Institute.
https://www.researchgate.net/publication/239442576_Bayesian_Model_Comparison_Review_and_Discussion
[31]  Craiu, R.V., Gustafson, P. and Rosenthal, J.S. (2022) Reflections on Bayesian Inference and Markov Chain Monte Carlo. The Canadian Journal of Statistics, 50, 1213-1227.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cjs.11707
https://doi.org/10.1002/cjs.11707
[32]  Goldstein, M. (2006) Subjective Bayesian Analysis: Principles and Practice. Bayesian Analysis, 1, 403-420.
https://projecteuclid.org/journals/bayesian-analysis/volume-1/issue-3/Subjective-Bayesian-Analysis-Principles-and-Practice/10.1214/06-BA116.pdf
https://doi.org/10.1214/06-BA116
[33]  Taka, E., Stein, S. and Williamson, J.H. (2020) Increasing Interpretability of Bayesian Probabilistic Programming Models through Interactive Representations. Human-Media Interaction-Frontiers in Computer Science, 2, Article 567344.
https://sci-hub.se/
https://doi.org/10.3389/fcomp.2020.567344
https://doi.org/10.3389/fcomp.2020.567344
[34]  Akanbi, O.B., Olubusoye, O.E. and Odeyemi, O.O. (2020) Sensitivity of the Posterior Mean on the Prior Assumptions: An Application of the Ellipsoid Bound Theorem. Journal of Scientific Research & Reports, 26, 134-149.
https://doi.org/10.9734/jsrr/2020/v26i730291
[35]  Dąbrowska, E. (2020) Monte Carlo Simulation Approach to Reliability Analysis of Complex Systems. Journal of KONBiN, 50, 155-170.
https://doi.org/10.2478/jok-2020-0010
[36]  Albert, D.R. (2020) Monte Carlo Uncertainty Propagation with the NIST Uncertainty Machine. Journal of Chemical Education, 97, 1491-1494.
https://doi.org/10.1021/acs.jchemed.0c00096
[37]  Bond, S.D., Franke, B.C., Lehoucq, R.B., Smith, J.D. and McKinley, S.A. (2022) Sensitivity Analyses for Monte Carlo Sampling-Based Particle Simulations. Sandia National Laboratorie, 1-50.
https://www.sandia.gov/app/uploads/sites/205/2022/09/SAND2022-12721.pdf
https://doi.org/10.2172/1889334
[38]  Krystul, J. and Blom, H.A.P. (2006) Sequential Monte Carlo Simulation of Rare Event Probability in Stochastic Hybrid Systems. National Aerospace Laboratory NLR, 1-7.
https://core.ac.uk/download/pdf/53034179.pdf
https://doi.org/10.3182/20050703-6-CZ-1902.00382
[39]  Muraro, S., Battistoni, G. and Kraan, A.C. (2020) Challenges in Monte Carlo Simulations as Clinical and Research Tool in Particle Therapy: A Review. Frontiers in Physics, 8, Article 567800.
https://sci-hub.se/10.3389/fphy.2020.567800
https://doi.org/10.3389/fphy.2020.567800
[40]  Hickey, J.M., Veerkamp, R.F., Calus, M.P.L., Mulder, H.A. and Thompson, R. (2009) Estimation of Prediction Error Variances via Monte Carlo Sampling Methods Using Different Formulations of the Prediction Error Variance. Genetics Selection Evolution, 41, Article 23.
https://sci-hub.se/10.1186/1297-9686-41-23
https://doi.org/10.1186/1297-9686-41-23
[41]  Roslan, N.R., Fauzi, N. and Ridzuan, M. (2022) Monte Carlo Simulation Convergences’ Percentage and Position in Future Reliability Evaluation. International Journal of Electrical and Computer Engineering, 12, 6218-6227.
https://doi.org/10.11591/ijece.v12i6.pp6218-6227
[42]  Qin, N., et al. (2018) Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit. International Journal of Radiation Oncology Biology Physics, 100, 235-243.
https://sci-hub.se/
https://doi.org/10.1016/j.ijrobp.2017.09.002
[43]  Kern, S., McGuinn, M.E., Smith, K.M., et al. (2023) Computationally Efficient Parameter Estimation for High-Dimensional Ocean Biogeochemical Models. Geoscientific Model Development, 17, 1-34.
https://doi.org/10.5194/gmd-2023-107
[44]  Gornov, A., Sorokovikov, P. and Zarodnyuk, T. (2019) Computational Technology for Global Search Based on the Modified Algorithm of the Univariate Nonlocal Optimization. Advances in Intelligent Systems Research, 169, 189-193.
https://www.atlantis-press.com/article/125917325.pdf
https://doi.org/10.2991/iwci-19.2019.33
[45]  Iwasaki, Y., et al. (2022) Evaluation of Optimization Algorithms and Noise Robustness of DMDsp. IEEE Access, 10, 80748-80763.
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9837072
https://doi.org/10.1109/ACCESS.2022.3193157
[46]  Koppen, S., Langelaar, M. and van Keulen, F. (2022) A Simple and Versatile Topology Optimization Formulation for Flexure Synthesis. Mechanism and Machine Theory, 172, Article 104743.
https://doi.org/10.1016/j.mechmachtheory.2022.104743
[47]  Esward, T., Matthews, C., Wright, L. and Yang, X.-S. (2010) Sensitivity Analysis, Optimization, and Sampling Methods Applied to Continuous Models. NPL Report MS 2, 1-44.
https://eprintspublications.npl.co.uk/4783/1/MS2.pdf
[48]  Arora, S. and Barak, B. (2007) Computational Complexity: A Modern Approach.
https://theory.cs.princeton.edu/complexity/book.pdf
[49]  Arora, S. and Singh, S. (2016) An Effective Hybrid Butterfly Optimization Algorithm with Artificial Bee Colony for Numerical Optimization. International Journal of Interactive Multimedia and Artificial Intelligence, 4, 14-21.
https://reunir.unir.net/bitstream/handle/123456789/11743/ijimai20174_4_2_pdf_16914.pdf?sequence=1&isAllowed=y
https://doi.org/10.9781/ijimai.2017.442
[50]  Sebastjan, P. and Kuś, W. (2023) Method for Parameter Tuning of Hybrid Optimization Algorithms for Problems with High Computational Costs of Objective Function Evaluations. Applied Sciences, 13, Article 6307.
https://doi.org/10.3390/app13106307
[51]  Singh, C. (2023) Machine Learning in Pattern Recognition. European Journal of Engineering and Technology Research, 8, 63-68.
https://doi.org/10.24018/ejeng.2023.8.2.3025
[52]  Caputo, C. and Cardin, M.-A. (2021) The Role of Machine Learning for Flexibility and Real Options Analysis in Engineering Systems Design. Proceedings of the International Conference on Engineering Design (ICED21), Gothenburg, 16-20 August 2021, 3121-3130.
https://doi.org/10.1017/pds.2021.573
[53]  Sharm, V. (2022) A Study on Data Scaling Methods for Machine Learning. International Journal for Global Academic & Scientific Research, 1, 31-42.
https://doi.org/10.55938/ijgasr.v1i1.4
[54]  Diaz, R.S., Neutatz, F. and Abedjan, Z. (2021) Automated Feature Engineering for Algorithmic Fairness. Proceedings of the VLDB Endowment, 14, 1694-1702.
https://doi.org/10.14778/3461535.3463474
[55]  Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L. and Zhong, C. (2022) Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. Statistics Surveys, 16, 1-85.
https://doi.org/10.1214/21-SS133
[56]  Pei, Z., Liu, L., Wang, C. and Wang, J. (2021) Requirements Engineering for Machine Learning: A Review and Reflection, 1-10.
https://aire-ws.github.io/aire22/papers/AIRE_05.pdf
[57]  Ying, X. (2019) An Overview of Overfitting and Its Solutions. Journal of Physics: Conference Series, 1168, Article 022022.
https://doi.org/10.1088/1742-6596/1168/2/022022
[58]  Elgeldawi, E., Sayed, A., Galal, A.R. and Zaki, A.M. (2021) Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics, 8, Article 79.
https://doi.org/10.3390/informatics8040079
[59]  Salema, N. and Hussein, S. (2019) Data Dimensional Reduction and Principal Components Analysis. Procedia Computer Science, 163, 292-299.
https://doi.org/10.1016/j.procs.2019.12.111
[60]  Ali, E., Hossain, A. and Islam, R. (2019) Analysis of PCA Based Feature Extraction Methods for Classification of Hyperspectral Image. 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, 23-24 December 2019, 1-6.
https://sci-hub.se/10.1109/ICIET48527.2019.9290629
https://doi.org/10.1109/ICIET48527.2019.9290629
[61]  Colom, M. and Buades, A. (2016) Analysis and Extension of the PCA Method, Estimating a Noise Curve from a Single Image. Image Processing On Line, 6, 365-390.
https://doi.org/10.5201/ipol.2016.124
[62]  Misue, K., Sugiyama, K. and Tanaka, J. (2006) Asia-Pacific Symposium on Information Visualization. Conferences in Research and Practice in Information Technology (CRPIT), 60, 1-10.
https://crpit.scem.westernsydney.edu.au/Vol60.html
[63]  Weeraratne, N., Hunt, L. and Kurz, J. (2024) Challenges of Principal Component Analysis in High-Dimensional Settings when nhttps://www.researchsquare.com/article/rs-4033858/v1
https://doi.org/10.21203/rs.3.rs-4033858/v1
[64]  Briscik, M, Dillies, M.-A. and Déjean, S. (2023) Improvement of Variables Interpretability in Kernel PCA. BMC Bioinformatics, 24, Article No. 282.
https://doi.org/10.1186/s12859-023-05404-y
[65]  Hong, J. and Kent, E.M. (2000) Bias in Principal Components Analysis Due to Correlated Observations. Conference on Applied Statistics in Agriculture, Manhattan, 30April-2May, 2000, 148-160.
[66]  Yang, X., Chen, J., Gu, X., He, R. and Wang, J. (2023) Sensitivity Analysis of Scalable Data on Three PCA Related Fault Detection Methods Considering Data Window and Thermal Load Matching Strategies. Expert Systems with Applications, 234, Article 121024.
https://www.sciencedirect.com/science/article/abs/pii/S0957417423015269
https://doi.org/10.1016/j.eswa.2023.121024
[67]  Lin, Z., Yin, F. and Maronas, J. (2023) Towards Flexibility and Interpretability of Gaussian Process State-Space Model. 1-22.
https://arxiv.org/pdf/2301.08843.pdf
[68]  Li, Y., Rao, S., Hassaine, A., et al. (2021) Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records. Scientific Reports, 11, Article No. 20685.
https://doi.org/10.1038/s41598-021-00144-6
[69]  Patan, A., et al. (2022) Adversarial Robustness Guarantees for Gaussian Processes. Journal of Machine Learning Research, 23, 1-55.
https://jmlr.org/papers/volume23/21-0382/21-0382.pdf
[70]  Galy-Fajou, T. and Opper, M. (2021) Adaptive Inducing Points Selection for Gaussian Processes. 1-9.
https://arxiv.org/pdf/2107.10066.pdf
[71]  Belyaev, M., Burnaev, E. and Kapushev, Y. (2016) Computationally Efficient Algorithm for Gaussian Process Regression in Case of Structured Samples. Computational Mathematics and Mathematical Physics, 56, 499-513.
https://doi.org/10.1134/S0965542516040163
[72]  Liu, H., Cai, J., Ong, Y.-S. and Wang, Y. (2019) Understanding and Comparing Scalable Gaussian Process Regression for Big Data. Knowledge-Based Systems, 164, 324-335.
https://sci-hub.se/
https://doi.org/10.1016/j.knosys.2018.11.002
https://doi.org/10.1016/j.knosys.2018.11.002
[73]  Abdessalem, A.B., Dervilis, N., Wagg, D.J. and Worden, K. (2017) Automatic Kernel Selection for Gaussian Processes Regression with Approximate Bayesian Computation and Sequential Monte Carlo. Frontiers in Built Environment, 3, Article 52.
https://doi.org/10.3389/fbuil.2017.00052
[74]  Yoshikawa, Y. and Iwata, T. (2023) Gaussian Process Regression with Interpretable Sample-Wise Feature Weights. IEEE Transactions on Neural Networks and Learning Systems, 34, 5789-5803.
https://doi.org/10.1109/TNNLS.2021.3131234
[75]  Zhang, J., Yang, Y. and Ding, J. (2023) Information Criteria for Model Selection. WIREs Computational Statistics, 15, e1607.
https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wics.1607
https://doi.org/10.1002/wics.1607
[76]  Kuha, J. (2004) AIC and BIC: Comparisons of Assumptions and Performance. Sociological Methods & Research, 33, 188-229.
https://sci-hub.se/10.1177/0049124103262065
https://doi.org/10.1177/0049124103262065
[77]  Emiliano, P.C., Vivanco, M.J.F. and de Menezes, F.S. (2013) Information Criteria: How Do They Behave in Different Models? Computational Statistics & Data Analysis, 69, 141-153.
https://sci-hub.se/10.1016/j.csda.2013.07.032
https://doi.org/10.1016/j.csda.2013.07.032
[78]  Preacher, K.J. and Merkle, E.C. (2012) The Problem of Model Selection Uncertainty in Structural Equation Modeling. Psychological Methods, 17, 1-14.
https://quantpsy.org/pubs/preacher_merkle_2012.pdf
https://doi.org/10.1037/a0026804
[79]  Brewer, M.J., Butler, A. and Cooksley, S.L. (2016) The Relative Performance of AIC, AICC and BIC in the Presence of Unobserved Heterogeneity. Methods in Ecology and Evolution, 7, 679-692.
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.12541
https://doi.org/10.1111/2041-210X.12541
[80]  Harbecke, J., Grunau, J. and Samanek, P. (2024) Are the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) Applicable in Determining the Optimal Fit and Simplicity of Mechanistic Models? International Studies in the Philosophy of Science, 1-20.
https://doi.org/10.1080/02698595.2024.2304487
[81]  Chakrabarti, A. and Ghosh, J.K. (2011) AIC, BIC and Recent Advances in Model Selection. Philosophy of Statistics, 7, 583-605.
https://sci-hub.se/
https://doi.org/10.1016/B978-0-444-51862-0.50018-6
https://doi.org/10.1016/B978-0-444-51862-0.50018-6
[82]  Dziak, J.J., Coffman, D.L., Lanza, S.T. and Li, R. (2012) Sensitivity and Specificity of Information Criteria. The Pennsylvania State University, Technical Report Series, 1-31.
https://www.latentclassanalysis.com/wp-content/uploads/2021/04/12-119-1.pdf
[83]  Menin, B. (2019) Progress in Reducing the Uncertainty of Measurement of Planck’s Constant in Terms of the Information Approach. Physical Science International Journal, 21, 1-11.
https://journalpsij.com/index.php/PSIJ/article/view/531
[84]  Menin, B. (2018) h, k, NA: Evaluating the Relative Uncertainty of Measurement. American Journal of Computational and Applied Mathematics, 8, 93-102.
http://article.sapub.org/10.5923.j.ajcam.20180805.02.html
[85]  Del Santo, F. and Gisin, N. (2019) Physics without Determinism: Alternative Interpretations of Classical Physics. Physical Review A, 100, Article 062107.
https://doi.org/10.1103/PhysRevA.100.062107
[86]  Zurek, W.H. (2022) Quantum Theory of the Classical: Einselection, Envariance, Quantum Darwinism and Extantons. Entropy, 24, Article 1520.
https://doi.org/10.3390/e24111520
[87]  Bombelli, L., Koul, R.K., Lee, J. and Sorkin, R.D. (1986) Quantum Source of Entropy for Black Holes. Physical Review D, 34, 373-383.
https://doi.org/10.1103/PhysRevD.34.373
[88]  Marolf, D. (2017) The Black Hole Information Problem: Past, Present, and Future. Reports on Progress in Physics, 80, Article 092001.
https://sci-hub.se/10.1088/1361-6633/aa77cc
https://doi.org/10.1088/1361-6633/aa77cc
[89]  Tegmark, M. (2014) Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Vintage Books, New York.
[90]  Valentini, A. (2002) Subquantum Information and Computation. Pramana Journal of Physics, 59, 269-277.
https://sci-hub.se/10.1007/s12043-002-0117-1
https://doi.org/10.1007/s12043-002-0117-1
[91]  Dowker, F. and Zalel S. (2017) Evolution of Universes in Causal Set Cosmology. Comptes Rendus Physique, 18, 246-253.
https://doi.org/10.1016/j.crhy.2017.03.002
[92]  Menin, B. (2021) Construction of a Model as an Information Channel between the Physical Phenomenon and Observer. Journal of the Association for Information Science and Technology, 72, 1198-1210.
https://doi.org/10.1002/asi.24473
[93]  Burgin, M. (2003) Information Theory: A Multifaceted Model of Information. Entropy, 5, 146-160.
https://doi.org/10.3390/e5020146
https://doi.org/10.3390/e5020146
[94]  Menin, B. (2018) Applying Measurement Theory and Information-Based Measure in Modelling Physical Phenomena and Technological Processes. European Journal of Engineering Research and Science, 3, 28-34.
https://ej-eng.org/index.php/ejeng/article/view/594
https://doi.org/10.24018/ejers.2018.3.1.594
[95]  Menin, B. (2019) A Look at the Uncertainty of Measuring the Fundamental Constants and the Maxwell Demon from the Perspective of the Information Approach. Global Journal of Researchers in Engineering: A mechanical and mechanics engineering, 19, 1-17.
https://globaljournals.org/GJRE_Volume19/1-A-Look-at-the-Uncertainty.pdf
[96]  Menin, B. (2019) Precise Measurements of the Gravitational Constant: Revaluation by the Information Approach. Journal of Applied Mathematics and Physics, 7, 1272-1288.
http://file.scirp.org/pdf/JAMP_2019062614403787.pdf
https://doi.org/10.4236/jamp.2019.76087
[97]  Menin, B. (2019) Hubble Constant Tension in Terms of Information Approach. Physical Science International Journal, 23, 1-15.
https://doi.org/10.9734/psij/2019/v23i430165
[98]  Sedov, L.I. (1993) Similarity and Dimensional Methods in Mechanic. CRC Press, Florida.
[99]  Menin, B. (2017) Simplest Method for Calculating the Lowest Achievable Uncertainty of Model at Measurements of Fundamental Physical Constants. Journal of Applied Mathematics and Physics, 5, 2162-2171.
https://www.scirp.org/journal/paperinformation?paperid=80237
https://doi.org/10.4236/jamp.2017.511176
[100]  Menin, B. (2017) Novel Approach: Information Quantity for Calculating Uncertainty of Mathematical Model. Proceedings, 1, Article 214.
https://www.mdpi.com/2504-3900/1/3/214
https://doi.org/10.3390/IS4SI-2017-04034
[101]  Menin, B. (2017) Universal Metric for the Assessing the Magnitude of the Uncertainty in the Measurement of Fundamental Physical Constants. Journal of Applied Mathematics and Physics, 5, 365-385.
https://www.scirp.org/journal/paperinformation?paperid=74189
https://doi.org/10.4236/jamp.2017.52033
[102]  Menin, B.M. (2018) Optimal Mathematical Model for Description of Physical Phenomena and Technological Processes. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 18, 322-330 (In Russian).
https://doi.org/10.17586/2226-1494-2018-18-2-322-330
[103]  Menin, B. (2017) Information Measure Approach for Calculating Model Uncertainty of Physical Phenomena. American Journal of Computational and Applied Mathematics, 7, 11-24.
[104]  Brillouin, L. (1953) Science and Information Theory. New York, NY, USA: Academic Press.
https://doi.org/10.1063/1.3057866
[105]  Newell, D.B. and Tiesinga, E. (2019) The International System of Units (SI). NIST Special Publication 330, 1-138.
https://doi.org/10.6028/NIST.SP.330-2019
[106]  Wübbeler, G., Bodnar, O. and Elster, C. (2017) Robust Bayesian Linear Regression with Application to an Analysis of the CODATA Values for the Planck Constant. Metrologia, 55, 20-28.
https://sci-hub.se/10.1088/1681-7575/aa98aa
https://doi.org/10.1088/1681-7575/aa98aa
[107]  Dodson, D. (2013) Quantum Physics and the Nature of Reality (QPNR) Survey: 2011.
https://www.scirp.org/reference/referencespapers?referenceid=2739480
[108]  Henrion, M. and Fischhoff, B. (1986) Assessing Uncertainty in Physical Constants. American Journal of Physics, 54, 791-798.
https://sci-hub.se/10.1119/1.14447
https://doi.org/10.1119/1.14447
[109]  Menin, B. (2020) High Accuracy When Measuring Physical Constants: From the Perspective of the Information-Theoretic Approach. Journal of Applied Mathematics and Physics, 8, 861-867.
https://doi.org/10.4236/jamp.2020.85067
[110]  Menin, B. (2023) Advancing Scientific Rigor: Towards a Universal Informational Criterion for Assessing Model-Phenomenon Mismatch. Journal of Applied Mathematics and Physics, 11, 1817-1836.
https://www.scirp.org/pdf/jamp_2023071113462472.pdf
https://doi.org/10.4236/jamp.2023.117117
[111]  Yao, W., et al. (2019) An Empirical Approach for Parameters Estimation of Underwater Electrical Wire Explosion. Physics of Plasmas, 26, Article 093502.
https://doi.org/10.1063/1.5111518
[112]  Han, Z., Zhang, X., Yan, B., Qiao, L. and Li, Z. (2022) Methods on the Determination of the Circuit Parameters in an Underwater Spark Discharge. Mathematical Problems in Engineering, 2022, Article ID: 7168375.
https://doi.org/10.1155/2022/7168375
[113]  Shafer, D., et al. (2015) Generation of Ultra-Fast Cumulative Water Jets by Sub-Microsecond Underwater Electrical Explosion of Conical Wire Arrays. Physics of Plasmas, 22, Article 122703.
https://doi.org/10.1063/1.4937370
[114]  Henzan, R., Higa, Y., Higa, O., Shimojima, K. and Itoh, S. (2018) Numerical Simulation of Electrical Discharge Characteristics Induced by Underwater Wire Explosion. Materials Science Forum, 910, 72-77.
https://sci-hub.se/10.4028/www.scientific.net/MSF.910.72
https://doi.org/10.4028/www.scientific.net/MSF.910.72
[115]  Tuholukov, A. and Stelmashuk, V. (2020) Comparison of Underwater Spark Simulation Using Elliptical and Cylindrical Models. WDS20 Proceedings of Contributed Papers, Physics, Prague, 22-24 September 2020, 111-117.
https://www.mff.cuni.cz/veda/konference/wds/proc/pdf20/WDS20_17_f2_Tuholukov.pdf
[116]  Wojtowicza, J., Wojtowiczb, H. and Wajs, W. (2015) Simulation of Electrohydrodynamic Phenomenon Using Computational Intelligence Methods. Procedia Computer Science, 60, 188-196.
https://sci-hub.se/10.1016/j.procs.2015.08.118
https://doi.org/10.1016/j.procs.2015.08.118
[117]  Bose, D., Palmer, G.E. and Wright, M.J. (2006) Uncertainty Analysis of Laminar Aeroheating Predictions for Mars Entries. Journal of Thermophysics and Heat Transfer, 20, 652-662.
https://doi.org/10.2514/1.20993
[118]  Thol, M., Dubberke, F.H., Baumhögger, E., Span, R. and Vrabec, J. (2018) Speed of Sound Measurements and a Fundamental Equation of State for Hydrogen Chloride. Journal of Chemical & Engineering Data, 63, 2533-2547.
https://doi.org/10.1021/acs.jced.7b01031
[119]  Trachenko, K., Monserrat, B., Pickard, C.J. and Brazhkin, V.V. (2020) Speed of Sound from Fundamental Physical Constants. Science Advances, 6, eabc8662.
https://sci-hub.se/10.1126/sciadv.abc8662
https://doi.org/10.1126/sciadv.abc8662
[120]  Segovia, J.J., Lozano-Martin, D., Tuma, D., Moreau, A., Carmen Martín, M. and Vega-Maza, D. (2022) Speed of Sound Data and Acoustic Virial Coefficients of Two Binary (N2 H2) Mixtures at Temperatures between (260 and 350) K and at Pressures between (0.5 and 20) MPa. The Journal of Chemical Thermodynamics, 171, Article 106791.
https://doi.org/10.1016/j.jct.2022.106791
[121]  Gourgoulias, K., Katsoulakis, M.A., Rey-Bellet, L. and Wang, J. (2020) How Biased Is Your Model? Concentration Inequalities. Information and Model Bias. IEEE Transactions on Information Theory, 66, 3079-3097.
https://arxiv.org/abs/1706.10260
https://doi.org/10.1109/TIT.2020.2977067
[122]  Patra, L.K., Kayal, S. and Kumar, S. (2020) Measuring Uncertainty Under Prior Information. IEEE Transactions on Information Theory, 66, 2570-2580.
https://sci-hub.se/10.1109/TIT.2020.2970408
https://doi.org/10.1109/TIT.2020.2970408
[123]  Cunha Jr., A. (2017) Modeling and Quantification of Physical Systems Uncertainties in a Probabilistic Framework. Probabilistic Prognostics and Health Management of Energy Systems, Springer International Publishing, New York, 1-34.
https://hal.science/hal-01516295/document
https://doi.org/10.1007/978-3-319-55852-3_8
[124]  Menin, B. (2022) The Role of Thinker Consciousness in Measurement Accuracy: An Informational Approach. International Journal Information Theories & Applications, 29, 203-229.
https://doi.org/10.54521/ijita29-03-p01
[125]  Golan, A. and Harte, J. (2022) Information Theory: A Foundation for Complexity Science. Proceedings of the National Academy of Sciences of the United States of America, 119, e2119089119.
https://doi.org/10.1073/pnas.2119089119

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133