全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adoption of Artificial Intelligence Techniques for Inventory Management: A Case Study in the Aviation Sector

DOI: 10.4236/ajibm.2024.145040, PP. 783-799

Keywords: Inventory Management, Artificial Intelligence, Machine Learning, Deep Learning, Spares Management, Multi-Criteria Inventory Classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spares management is of great significance as it not only regulates the flow of the inventory but also impacts the financial status of the company’s balance sheet. All organizations continuously try to maintain optimum inventory levels in order to not only meet their supplies and demands but also ensure there is no “excess or less inventory” that can directly influence the financial data. To perform the balancing act of these conflicting requirements is an ongoing process, especially in volatile industries like aviation with fluctuations in demand, lead time, and criticality. The aim is to categorize spares based on multiple criteria using AI techniques in the aviation sector by expanding the traditional VED classification method to achieve better inventory control.

References

[1]  Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-Art in Artificial Neural Network Applications: A Survey. Heliyon, 4, e00938.
https://doi.org/10.1016/j.heliyon.2018.e00938
[2]  Adur Kannan, B., Kodi, G., Padilla, O., Gray, D., & Smith, B. C. (2020). Forecasting Spare Parts Sporadic Demand Using Traditional Methods and Machine Learning—A Comparative Study. SMU Data Science Review, 3, 9.
[3]  Agarwal, S., Jain, N., & Dholay, S. (2015). Adaptive Testing and Performance Analysis Using Naive Bayes Classifier. Procedia Computer Science, 45, 70-75.
https://doi.org/10.1016/j.procs.2015.03.088
[4]  Aktepe, A., Turker, A. K., Ersoz, S., Dalgic, A., & Barisci, N. (2018). An Inventory Classification Approach Combining Expert Systems, Clustering, and Fuzzy Logic with the ABC Method, and an Application. South African Journal of Industrial Engineering, 29, 49-62.
https://doi.org/10.7166/29-1-1784
[5]  Amirkolaii, K. N., Baboli, A., Shahzad, M. K., & Tonadre, R. (2017). Demand Forecasting for Irregular Demands in Business Aircraft Spare Parts Supply Chains by Using Artificial Intelligence (AI). IFAC-PapersOnLine, 50, 15221-15226.
https://doi.org/10.1016/j.ifacol.2017.08.2371
[6]  Balugani, E., Lolli, F., Gamberini, R., Rimini, B., & Babai, M. Z. (2019). A Periodic Inventory System of Intermittent Demand Items with Fixed Lifetimes. International Journal of Production Research, 57, 6993-7005.
https://doi.org/10.1080/00207543.2019.1572935
[7]  Fu, W., Chien, C. F., & Lin, Z. H. (2018). A Hybrid Forecasting Framework with Neural Network and Time-Series Method for Intermittent Demand in Semiconductor Supply Chain. In IFIP International Conference on Advances in Production Management Systems (pp. 65-72). Springer.
https://doi.org/10.1007/978-3-319-99707-0_9
[8]  Geron, A. (2017). Hands-On Machine Learning with Scikit-Learn & Tensorflow (pp. 1005, 564). O’Reilly Media, Inc.
[9]  Gong, A., & Liu, Y. (2011). Improved KNN Classification Algorithm by Dynamic Obtaining K. In International Conference on Electronic Commerce, Web Application, and Communication (pp. 320-324). Springer.
https://doi.org/10.1007/978-3-642-20367-1_51
[10]  Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19, 139-152.
https://doi.org/10.2753/MTP1069-6679190202
[11]  Henseler, J., & Fassott, G. (2010). Testing Moderating Effects in PLS Path Models: An Illustration of Available Procedures. In V. Esposito Vinzi, W. W. Chin, et al. (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 713-735). Springer.
https://doi.org/10.1007/978-3-540-32827-8_31
[12]  Jackson, I., Avdeikins, A., & Tolujevs, J. (2018). Unsupervised Learning-Based Stock Keeping Units Segmentation. In International Conference on Reliability and Statistics in Transportation and Communication (pp. 603-612). Springer.
https://doi.org/10.1007/978-3-030-12450-2_58
[13]  James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (Vol. 112, p. 18). Springer.
https://doi.org/10.1007/978-1-4614-7138-7
[14]  Jiao, L., Geng, X., & Pan, Q. (2019). BPkNN: K-Nearest Neighbour Classifier with Pairwise Distance Metrics and Belief Function Theory. IEEE Access, 7, 48935-48947.
https://doi.org/10.1109/ACCESS.2019.2909752
[15]  Kartal, H. B., & Cebi, F. (2013). Support Vector Machines for Multi-Attribute ABC Analysis. International Journal of Machine Learning and Computing, 3, 154.
https://doi.org/10.7763/IJMLC.2013.V3.292
[16]  Kartal, H., Oztekin, A., Gunasekaran, A., & Cebi, F. (2016). An Integrated Decision Analytic Framework of Machine Learning with Multi-Criteria Decision Making for Multi-Attribute Inventory Classification. Computers & Industrial Engineering, 101, 599-613.
https://doi.org/10.1016/j.cie.2016.06.004
[17]  Kumar, P. (2018). Development of Demand Forecast and Inventory Management Decision Support System Using AI Techniques. Doctoral Dissertation, National Institute of Technology Karnataka, Surathkal.
[18]  Kumawat, D. R., & Samad, A. (2018). Multi-Criteria Inventory Classification for Retailer Using Artificial Neural Network.
[19]  Ladhari, T., Babai, M. Z., & Lajili, I. (2016). Multi-Criteria Inventory Classification: New Consensual Procedures. IMA Journal of Management Mathematics, 27, 335-351.
https://doi.org/10.1093/imaman/dpv003
[20]  Lolli, F., Balugani, E., Ishizaka, A., Gamberini, R., Rimini, B., & Regattieri, A. (2019). Machine Learning for Multi-Criteria Inventory Classification Applied to Intermittent Demand. Production Planning & Control, 30, 76-89.
https://doi.org/10.1080/09537287.2018.1525506
[21]  Mahesh, B. (2020). Machine Learning Algorithms—A Review. International Journal of Science and Research (IJSR), 9, 381-386.
[22]  Mirjankar, N., & Patil, P. B. (2018). Artificial Intelligence in Neural Network. International Journal of Engineering Research & Technology, 6.
[23]  Mondol, E. P. (2021). The Impact of Block Chain and Smart Inventory System on Supply Chain Performance at Retail Industry. International Journal of Computations, Information and Manufacturing (IJCIM), 1.
https://doi.org/10.54489/ijcim.v1i1.30
[24]  Nareshchandra, P. S., & Desai, D. A. (2019). Inventory Categorization Techniques for Effective Inventory Management. Journal of Emerging Technologies and Innovative Research, 6, 689-700.
[25]  Oberhauser, M., Dreyer, D., Mamessier, S., Convard, T., Bandow, D., & Hillebrand, A. (2015). Bridging the Gap between Desktop Research and Full Flight Simulators for Human Factors Research. In Engineering Psychology and Cognitive Ergonomics: 12th International Conference, EPCE 2015, Held as Part of HCI International 2015 (pp. 460-471). Springer International Publishing.
https://doi.org/10.1007/978-3-319-20373-7_44
[26]  Paul, S., Chatterjee, A., & Guha, D. (2019). Study of Smart Inventory Management System Based on the Internet of Things (IOT). International Journal on Recent Trends in Business and Tourism (IJRTBT), 3, 27-34.
[27]  Sarmah, S. P., & Moharana, U. C. (2015). Multi-Criteria Classification of Spare Parts Inventories—A Web-Based Approach. Journal of Quality in Maintenance Engineering, 21, 456-477.
https://doi.org/10.1108/JQME-04-2012-0017
[28]  Shenoy, D., & Rosas, R. (2018). Problems & Solutions in Inventory Management. Springer.
https://doi.org/10.1007/978-3-319-65696-0
[29]  Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial Intelligence in Supply Chain Management: A Systematic Literature Review. Journal of Business Research, 122, 502-517.
https://doi.org/10.1016/j.jbusres.2020.09.009
[30]  Wu, Y. (2016). Multi-Criteria Inventory Classification and Root Cause Analysis Based on Logical Analysis of Data. Ecole Polytechnique, Montreal (Canada).
[31]  Yang, K., Wang, Y., Fan, S., & Mosleh, A. (2021). Multi-Criteria Spare Parts Classification Using the Deep Convolutional Neural Network Method. Applied Sciences, 11, 7088.
https://doi.org/10.3390/app11157088
[32]  Yung, K. L., Ho, G. T. S., Tang, Y. M., & Ip, W. H. (2021). Inventory Classification System in Space Mission Component Replenishment Using Multi-Attribute Fuzzy ABC Classification. Industrial Management & Data Systems, 121, 637-656.
https://doi.org/10.1108/IMDS-09-2020-0518
[33]  Zowid, F. M., Babai, M. Z., Douissa, M. R., & Ducq, Y. (2019). Multi-Criteria Inventory ABC Classification Using Gaussian Mixture Model. IFAC-PapersOnLine, 52, 1925-1930.
https://doi.org/10.1016/j.ifacol.2019.11.484

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133