全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrochemical Study of the Corrosion Inhibitory Capacity of Calcined Attapulgite in Reinforced Concrete Medium

DOI: 10.4236/ampc.2024.145007, PP. 76-94

Keywords: Attapulgite, Electrochemical Methods, Inhibitor, Reinforced Concrete

Full-Text   Cite this paper   Add to My Lib

Abstract:

The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main factors of corrosion of reinforced concrete structures. This study aims to valorize a clay inhibitor against reinforcement corrosion in reinforced concrete. This clay (Attapulgite) was incorporated into reinforced concretes at different percentages of substitution of calcined attapulgite (0%, 5% and 10%) to cement in the formulation. The corrosion inhibitory power of attapulgite is evaluated in reinforced concretes subjected to the action of chloride ions at different intervals in the NaCl solution (1 day, 21 days and 45 days) by electrochemical methods (zero current chronopotentiometry, polarization curves and electrochemical impedance spectroscopy). This study showed that in the presence of chloride ions, the composition based on 10% attapulgite has an appreciable inhibitory effect with an average inhibitory efficiency of 82%.

References

[1]  Oesterlee, C., Sadouki, H. and Brühwiler, E. (2008) Analyse structurale d’un pont composé de BFUP et de béton armé. Ecole Polytechnique Fédérale de Lausanne, Lausanne, 133-140.
[2]  Courard, L. and Bissonnette, B. (2016) Réparation des ouvrages en béton armé-Partie 2: Compatibilité et performances. Analyse Chimique et Caractérisation. Techniques de l’Ingénieur.
https://doi.org/10.51257/a-v1-c6302
[3]  Duprat, F., Sellier, A. and Lacarrière, L. (2004) Evaluation probabiliste du risque de corrosion par carbonatation. Revue Française de Génie Civil, 8, 975-997.
https://doi.org/10.1080/12795119.2004.9692637
[4]  Soufi, A. (2013) Etude de la durabilité des systèmes béton armé: mortiers de réparation en milieu marin. Doctoral Dissertation, Université de La Rochelle, La Rochelle.
[5]  Arteaga, E.-B., Schoefs, F. and Capra, B. (2010) Contribution à une gestion durable de structures en béton arme soumises à la pénétration d’ions chlorure. Congrès LM17: Maîtrise des Risques et sûreté de fonctionnement, La Rochelle, 1-10.
[6]  Bhawna, C., Kumar, T.-P. and Jyoti, B.-H. (2022) Corrosion Inhibition by Aluminum Oxide. In: Verma, C., Aslam, J., and Hussain, C.M., Eds., Inorganic Anticorrosive Materials: Past, Present and Future Perspectives, Elsevier, Amsterdam, 231-249.
https://doi.org/10.1016/B978-0-323-90410-0.00013-1
[7]  Andrade, C., Alonso, C., Acha, M. and Malric, B. (1992) Preliminary Testing of Na2PO3F as a Curative Corrosion-Inhibitor for Steel Reinforcements in Concrete. Cement and Concrete Research, 22, 869-881.
https://doi.org/10.1016/0008-8846(92)90111-8
[8]  Dhouibi, L., Triki, E., Salta, M., Rodrigues, P. and Raharinaivo, A. (2003) Studies on Corrosion Inhibition of Steel Reinforcement by Phosphate and Nitrite. Materials and Structures, 36, 530-540.
https://doi.org/10.1007/BF02480830
[9]  Soeda, K. and Ichimura, T. (2003) Present State of Corrosion Inhibitors. Cement & Concrete Composites, 25, 117-122.
https://doi.org/10.1016/S0958-9465(01)00058-0
[10]  Rincon, O.-T., Perez, O., Paredes, E., Caldera, Y., Urdaneta, C. and Sandoval, I. (2002) Long-Term Performance of ZnO as a Rebar Corrosion Inhibitor. Cement & Concrete Composites, 24, 79-87.
https://doi.org/10.1016/S0958-9465(01)00029-4
[11]  Chakri, S. (2015) Compréhension des mécanismes d'inhibition de la corrosion des armatures métalliques des bétons par des molécules d’origine biologique. Doctoral Dissertation, Université Pierre et Marie Curie-Paris VI, Paris.
[12]  Berke, N.S. and Sundberg, K.M. (1990) Effects of Calcium Nitrite and Microsilica Admixtures on Corrosion Resistance of Steel in Concrete. Special Publication, 122, 265-280.
[13]  Rivetti, M.L.S., Netto, J., Junior, M.A. and Ribeiro, D.V. (2018) Corrosion Inhibitors for Reinforced Concrete. Corrosion Inhibitors, Principles and Recent Applications, 35-58.
[14]  Chaussadent, T., Nobel-Pujol, W., Farcas, F., Mabille, I. and Fiaud, C. (2006) Effectiveness Conditions of Sodium Monofluorophosphate as a Corrosion Inhibitor for Concrete Reinforcements. Cement and Concrete Research, 36, 556-561.
https://doi.org/10.1016/j.cemconres.2005.09.006
[15]  Andrade, C. and Alonso, C. (1996) Corrosion Rate Monitoring in the Laboratory and Onsite. Construction and Building Materials, 10, 315-328.
https://doi.org/10.1016/0950-0618(95)00044-5
[16]  Agboola, O., Kupolati, K.W., Fayomi, O.S.I., Ayeni, A.O., Ayodeji, A., Akinmolayemi, J.J. and Oluwasegun, K.M. (2022) A Review on Corrosion in Concrete Structure: Inhibiting Admixtures and Their Compatibility in Concrete. Journal of Bio-and Tribo-Corrosion, 8, 25.
[17]  Ahmed, I., Karim, E. and Kadri, E.-H. (2010) Etude des déformations de retrait d’un mortier contenant différentes additions minérales. “SICZS_2010” Symposium International sur la Construction en Zone Sismique, Algérie, 26-27 October 2010, 1-10.
[18]  Ahmed, A.-A. (2014) Argiles en tant que Réservoirs d’Inhibiteurs de Corrosion métallique issus de ressources naturelles dans des peintures pour la protection des métaux (ARIC). Thèse de cotutelle entre l’université de lorraine et l’Université Cadi Ayyad, Université de Lorraine, Duché de Lorraine.
[19]  Bodian, M., Keinde, D., Touré, A.-O., Gueye, P.-M. and Fall, M. (2018) Valorization of Pout Attapulgite as Corrosion Inhibitor for Fe500-3 Concrete Reinforcing Iron in the Interstitial Solution of Concrete. International Journal of Innovation and Applied Studies, 24, 1603-1613.
[20]  Benaissa, M., Bendani, K., Belas, N., Belguesmia, K., Missoum, H., et al. (2016) Effet de l’ajout de la bentonite sur les propriétés des mortiers et des bétons autoplaçants. Matériaux & Techniques, 104, Article No. 608.
https://doi.org/10.1051/mattech/2017021
[21]  Isabelle, V.-F. (2009) Sensibilité de la technique d’émission acoustique à la corrosion des armatures dans le béton. Thèse de Doctorat, Université de Toulouse, Toulouse.
[22]  Hikmat, A.H. (2008) Applicabilite et efficacite d’une protection galvanique aux aciers de precontrainte. Thése de Doctorat, Université de Toulouse, Toulouse.
[23]  Gu, P., Ellott, S., Hristova, R., Beaudoin, J.J., Brousseau, R. and Baldock, B. (1997) A Study of Corrosion Inhibitor Performance in Chloride Contaminated Concrete by Electrochemical Impedance Spectroscopy. ACI Materials Journal, 49, 385-395.
[24]  Ford, S.J., Shane, J.D. and Mason, T.O. (1998) Assignment of Features in Impedance Spectra of the Cement-Paste/Steel System. Cement and Concrete Research, 28, 1737-1751.
https://doi.org/10.1016/S0008-8846(98)00156-2
[25]  Nasser, A. (2010) La corrosion des aciers dans le béton à l’état passif et par carbonatation: Prise en compte des courants galvaniques et des défauts d’interface acier-béton. Thèse de doctorat, Université de Toulouse, Toulouse.
[26]  Ryou, J., Voigt, T., Konsta-Gdoutos, M.S., Varacalle, D.J., Mason, T. and Shah, S.P. (2005) Corrosion Resistance of Functionally Graded Coatings on Plain Steel Rebars. Journal of Advanced Concrete Technology, 3, 69-75.
https://doi.org/10.3151/jact.3.69
[27]  Cerdán, C.-E., Blasco-Tamarit, E., García-García, D.-M., García-Antón, J., Akid, R. and Walton, J. (2013) Effect of Temperature on Passive Film Formation of UNS N08031 Cr-Ni Alloy in Phosphoric Acid Contaminated with Different Aggressive Anions. Electrochimica Acta, 111, 552-561.
https://doi.org/10.1016/j.electacta.2013.08.040
[28]  Doubi, M., Dermaj, A., Ramli, H., Chebabe, D., Hajjaji, N. and Srhir, A. (2013) Inhibition de la corrosion d’un acier E24 dans des eaux d’irrigation agricole. Science Lib Editions Mersenne, Mersenne, 5, 2111-4706.
[29]  Capra, B. (2014) Construction et travaux publics, Vieillissement, pathologies et réhabilitation du bâtiment. Techniques de l’Ingénieur Réf, C6151 V1.
[30]  Hu, J.Y., Zhang, S.S., Chen, E. and Li, W.G. (2022) A Review on Corrosion Detection and Protection of Existing Reinforced Concrete (RC) Structures. Construction and Building Materials, 325, Article 126718.
[31]  Sherif El-Sayed, M., Potgieter, J.H., Comins, J.D., Cornish, L., Olubambi, P.A. and Machio, C.N. (2009) The Beneficial Effect of Ruthenium Additions on the Passivation of Duplex Stainless Steel Corrosion in Sodium Chloride Solutions. Corrosion Science, 51, 1364-1371.
https://doi.org/10.1016/j.corsci.2009.03.022
[32]  Joanna, E., Takenouti, H., Saadi, B.A. and Taibi, S. (2020) Electrochemical Studies of Steel Rebar Corrosion in Clay: Application to a Raw Earth Concrete. Corrosion Science, 168, Article 108556.
https://doi.org/10.1016/j.corsci.2020.108556
[33]  ASTM C8 76-91 (1991) Standard Test Method for Half Cell Potentials of Reinforcing Steel in Concrete. Annual Book of ASTM Standards.
[34]  Oelssner, W., Berthold, F. and Guth, U. (2006) The iR Drop—Well-Known but Often Underestimated in Electrochemical Polarization Measurements and Corrosion Testing. Corrosion and Materials, 57, 455-466.
https://doi.org/10.1002/maco.200603982
[35]  Bodian, M., Keinde, D., Yade, I., Hannawi, K., Agbodjan, P.-W., Fall, M. and Darquennes, A. (2022) Study of Attapulgite as an Additive in Reinforced Concrete by Substitution of Cement and Its Effects on the Durability Properties of Hardened Concrete. Open Journal of Civil Engineering, 12, 301-319.
https://www.scirp.org/journal/ojce
https://doi.org/10.4236/ojce.2022.123018
[36]  Cairns, J. and Abdullah, R. (1995) An Evaluation of Bond Pullout Tests and Their Relevance to Structural Performance. Structural. Engineer, 1, 179-185.
[37]  Soda, K. and Takao I. (2003) Present State of Corrosion Inhibitors in Japan. Cement and Concrete Composites, 25, 117-122.
https://doi.org/10.1016/S0958-9465(01)00058-0
[38]  Garcés, P., Saura, P., Méndez, A., Zornoza, E. and Andrade, C. (2008) Effect of Nitrite in Corrosion of Reinforcing Steel in Neutral and Acid Solutions Simulating the Electrolytic Environments of Micropores of Concrete in the Propagation Period. Corrosion Science, 50, 498-509.
https://doi.org/10.1016/j.corsci.2007.08.016
[39]  Thomas, M.D.A., Hooton, R.D., Scott, A. and Zibara, H. (2012) The Effect of Supplementary Cementitious Materials on Chloride Binding in Hardened Cement Paste. Cement and Concrete Research, 42, 1-7.
https://doi.org/10.1016/j.cemconres.2011.01.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133