全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进MobileNetXt的轻量级手势识别方法
Lightweight Gesture Recognition Method Based on Improved MobileNetXt

DOI: 10.12677/mos.2024.133265, PP. 2922-2931

Keywords: 轻量级卷积神经网络,手势识别,CA注意力机制,MetaAconC激活函数
Lightweight Convolutional Neural Network
, Gesture Recognition, CA attention Mechanism, MetaAconC Activation Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

轻量级卷积神经网络在复杂背景下的手势图像识别任务中存在网络结构单一、特征提取能力差、识别精度低等问题,本文针对上述问题提出一种基于改进MobileNetXt的轻量级手势图像识别方法。该方法在Sandglass沙漏块中引入CA注意力机制,捕捉跨通道的方向和位置感知信息;选用MetaAconC激活函数自适应地控制神经元的激活程度,增强模型的特征学习能力和梯度传播效率。该方法在公开的NUS-II手势数据集上识别准确率达99.12%,比原始的MobileNetXt网络提高了2.25%,与GhostNet和EfficientNet经典轻量级卷积神经网络相比,本模型在训练时间、模型参数量和识别准确率等网络指标上均有更优的性能表现。实验结果表明该方法有较强的信息表征和通道提取能力,在面临多种复杂背景因素干扰的手势识别挑战时仍具有较高的识别准确率。
Lightweight convolutional neural networks face problems such as a single network structure, poor feature extraction ability, and low recognition accuracy in gesture image recognition tasks in complex backgrounds. This paper proposes a lightweight gesture image recognition method based on improved MobileNetXt to address these issues. This method introduces a CA attention mechanism into the Sandglass hourglass block to capture cross channel direction and position perception information; The MetaAconC activation function is selected to adaptively control the activation level of neurons, enhancing the model’s feature learning ability and gradient propagation efficiency. This method has a recognition accuracy of 99.12% on the publicly available NUS-II gesture dataset, which is 2.25% higher than the original MobileNetXt network. Compared with GhostNet and EfficientNet classic lightweight convolutional neural networks, this model performs better in network metrics such as training time, model parameter count, and recognition accuracy. The experimental results show that this method has strong information representation and channel extraction capabilities, and still has high recognition accuracy in the face of gesture recognition challenges caused by various complex background factors.

References

[1]  白煜, 李香萍, 张雨菡. 基于机器视觉的静态手势识别实验设计[J]. 实验技术与管理, 2023, 40(6): 187-191 198.
[2]  杜义浩, 曹添福, 范强, 王孝冉. 基于GA-BLS方法的手势识别研究[J]. 计量学报, 2024, 45(1): 121-127.
[3]  王宇春, 王敏, 袁东华, 赵化启. 基于DWPSO-SVM的sEMG手势动作识别[J]. 智能计算机与应用, 2023, 13(12): 158-164.
[4]  王庆鑫. 基于轻量级CNN的手势识别算法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2023.
[5]  霍英, 张嘉明, 陈台兴, 林鸿森, 彭季雨. 基于改进YOLOv5 Mobile Net的动态手势识别方法[J]. 软件, 2023, 44(11): 47-52.
[6]  赵康, 黎向锋, 李高扬, 左敦稳. 轻量级(2 1)D卷积结构的动态手势识别研究[J]. 微电子学与计算机, 2022, 39(9): 46-54.
[7]  王学慧, 赵跃鹏, 王嘉炜, 李振, 田秋红. 小波变换低频信息与Xception网络的静态手势识别[J]. 软件导刊, 2021, 20(8): 12-19.
[8]  Zhou, D., Hou, Q., Chen, Y., et al. (2020) Rethinking Bottleneck Structure for Efficient Mobile Network Design. Computer VisionECCV 2020: 16th European Conference, Glasgow, 23-28 August 2020, 680-697.
https://doi.org/10.1007/978-3-030-58580-8_40
[9]  Hou, Q., Zhou, D., Feng, J. (2021) Coordinate Attention for Efficient Mobile Network Design. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 20-25 June 2021, 13713-13722.
https://doi.org/10.1109/CVPR46437.2021.01350
[10]  Hu, J., Shen, L., Sun, G. (2018) Squeeze-and-Excitation Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 7132-7141.
https://doi.org/10.1109/CVPR.2018.00745
[11]  Agarap, A.F. (2018) Deep Learning Using Rectified Linear Units (Relu). arXiv preprint arXiv:1803.08375.
[12]  Ma, N., Zhang, X., Liu, M., et al. (2021) Activate or Not: Learning Customized Activation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 20-25 June 2021, 8032-8042.
https://doi.org/10.1109/CVPR46437.2021.00794
[13]  Pisharady, P.K., Vadakkepat, P. and Poh, L.A. (2017).The NUS Hand Posture Datasets II.
https://doi.org/10.25540/AWJS-GMJB

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133